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Abstract

In this thesis, we investigate skew projection. More specifically, we are interested
in determining how skew projection generates a conic. We give an introduction to
the history of the problem, including some history of geometry in the 19th Century
and the influence of notable geometers Jakob Steiner and Jean-Victor Poncelet. We
also provide relevant background theory to the problem, including an overview of
projective geometry, conics, forms, reguli, quadric surfaces, and group actions.

We then proceed to the main results. We provide a rigorous proof of the existence
of skew projection. We then prove the existence of a hyperbolic quadric generated by
three skew lines and their regulus by proving that the action of PGL(3,R) on triples
of skew lines is transitive. We then classify projective quadrics via Sylvester’s Law of
Inertia and in addition to the main results, we classify the affine quadrics. We then
determine the orbits of the hyperbolic quadric on degenerate and non-degenerate
planes via Sylvester’s Law and Witt’s (Extension) Theorem. By determining these
orbits, we ascertain the different conics generated by skew projection and determine
the conditions on planes and on lines for generating these conics.
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Chapter 1

Introduction

In this thesis, we will investigate skew projection. More specifically, we are interested
in determining how skew projection generates a conic. In Chapter 1, we will provide
an introduction to the history of the problem, including some history of geometry
in the 19th Century and the influence of notable geometers Jakob Steiner and Jean-
Victor Poncelet. We will also briefly introduce the reader to skew projection and
explain the set-up of the problem in further detail in Section 1.3. In Chapter 2, we
will provide relevant background theory to the problem, including an overview of
projective geometry, conics, forms, reguli, quadric surfaces, and group actions.

We then proceed to the main results in Chapter 3. We will provide a rigorous
proof of the existence of skew projection and the existence of a hyperbolic quadric
generated by three skew lines and their regulus. We will achieve the latter by
proving that the action of PGL(3,R) on triples of skew lines is transitive. We will
then classify projective quadrics via Sylvester’s Law of Inertia and we classify the
affine quadrics. After which, we will determine the orbits of the stabiliser of the
hyperbolic quadric on degenerate and non-degenerate planes via Sylvester’s Law
and Witt’s (Extension) Theorem. By determining these orbits, we will ascertain
the different conics generated by skew projection. In particular, we will determine
the conditions on planes and on lines for generating these conics.

1.1 Geometry in the 19th Century

After having its naissance – to the best of our knowledge – with the Ancients in
Greece, being taken up by the Arabic and Persian mathematicians a few millennia
afterwards, geometry found its way to modern Europe somewhere around the 16th
Century [7]. During the 19th Century, European geometry flourished. It was dur-
ing this century that the modern fields of projective and algebraic geometry were
established [11].

This thesis will investigate skew projection, a concept thought to have been
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2 Chapter 1. Introduction

Figure 1.1: Jakob Steiner (1796-1863) [16].

first formalised by Swiss-German mathematician Jakob Steiner in the 19th Cen-
tury. Contributions to skew projection were also made by French mathematician
Jean-Victor Poncelet. Both mathematicians led interesting lives and made great
contributions to 19th Century geometry.

Jakob Steiner

Jakob Steiner (1796-1863) was a Swiss mathematician, ‘the man who has been re-
garded as the greatest synthetic geometer of modern times’ [7]. His biographies often
attribute to him a great zeal for geometry; he is thought to have said, ‘Calculation re-
places, whilst geometry stimulates, thinking’ [16]. Steiner’s most notable work was
published in 1832, entitled Systematische Entwickelung der Abhängigkeit geomet-
rischer Gestalten von einander, which can be roughly translated as The systematic
development of the dependence of geometric shapes on one another (henceforth, we
will refer to the work as geometrischer Gestalten) [25]. It is viewed as a seminal
work in establishing the newly emerging field of projective geometry (it was in this
work that skew projection was introduced). A new chair of geometry was created
for him in Berlin in 1834, which he held until his death. One of his most notable
theorems, also attributed to Poncelet, is the so-called Poncelet-Steiner Theorem:

All Euclidean geometric constructions can be carried out with a straightedge
alone if, in addition, one is given the radius of a single circle and its
[centre].

Jean-Victor Poncelet

Meanwhile in France, Jean-Victor Poncelet (1788-1867) was approaching geometry
from a different angle. Poncelet studied under another notable French mathem-
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Figure 1.2: Jean-Victor Poncelet (1788-1867) [15].

atician, Gaspard Monge, and after graduation, he joined the Corps of Military
Engineers and served under Napoleon in the Russian invasion of 1812 [15]. This
was, of course, a failure, for it is well known that one should never invade Russia
during winter. Poncelet was taken prisoner by the Russians and whilst in prison
wrote his own seminal work on projective geometry, entitled Traité des propriétés
projectives des figures, which translates to Treatise on the projective properties of
figures (henceforth, we will refer to the work as Traité) [19, 20]. Though written
during the years 1812-1814, the work could not be published until his release in
1814, after which he wrote one, perhaps two, more volumes of the Traité; hence the
publication date is usually given much later as 1865. The Traité is seen as a found-
ational work for projective geometry, drawing together the prevailing knowledge of
the time. Some see Poncelet as ‘the effective founder of projective geometry’ [7].

1.2 History of the problem

As it appears in the works of Steiner and Poncelet

The link between Steiner, Poncelet, and skew projection appears to have come from
an online biography of Steiner, in which the following is stated:

Proposition 59 [of Steiner’s geometrischer Gestalten], labelled ‘general
observation’, contains the ‘skew projection’, a quadratic relationship in
space, sometimes called the ‘Steiner relationship’, which had been noted
by Poncelet.

The proposition alluded to is a section in geometrischer Gestalten devoted to
the hyperboloid and its properties, as stated in the opening line of Proposition 59
(emphasis added):
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Das einfache Hyperbolöıd giebt, vermöge der ihm zukommenden Ei-
genschaften und namentlich wermöge seiner doppelten Erzeugung durch
projectivische Gebilde, ein Mittel an die Hand die gegenseitige Abhahängigkeit
gewisser Systeme verschiedenartiger Figuren von einander klar darzut-
bun, die Uebertragung der Eigenschaften jedes Systems auf alle übrigen
leicht zu bewerkstelligen, und zugleich auch jedes System in jedes audere
zu verwandeln.

Unfortunately, it is difficult to obtain translations of geometrischer Gestalten and
available copies of the work are image scans, making it difficult to perform rough
translations of the work. However, the focus on hyperboloids was enough to realise
the link between quadrics and skew projection, which became integral to this thesis.

Furthermore, the online biography provides a reference to Poncelet’s Traité,
Section III, Chapter II. This reference is elusive, for two reasons. Firstly, there are
two volumes of Poncelet’s Traité. Secondly, this chapter, in either of the volumes, has
no clear relation to the problem. A few oblique references are made to the problem
in other sections of the work, including one in the supplementary chapter of the first
volume (‘Supplément sur les propriétés projectives des figures dans l’espace’, which
translates to ‘Supplement on the projective properties of figures in space’). In this
chapter, Article 581 poses a question about skew lines and transversals. There are
also references to quadric hyperboloids in the second volume, including one which
appears to relate the generation of a hyperboloid by a regulus and its opposite
regulus. The formulation of skew projection as it appears in this thesis does not
appear to be included in the Traité and neither do any of the statements mentioned
from the Traité go into further detail or proofs.

As it appears in the literature

Apart from Steiner and Poncelet, the problem is not widely represented in the
literature: only two references to the formulation of skew projection used in this
thesis could be found. In 1959, the problem was included in a mathematical reference
work [23], in which the author argues that this seemingly simple observation on lines
in space contained, in fact, valuable foresight. He observes that Steiner’s result
realised more complicated transformations, such as Cremona transformations:

In his classic [geometrischer Gestalten, Steiner] established and discussed
. . . the so-called skew projection (Scheife Projektion) and its applica-
tions. This projection is based upon two fixed planes, (x) and (x′), and
two fixed axes, l and y in space. From every point x in (x) there is,
in general, one transversal through l and y which cuts (x′) in a point
x′. Thus to every point in (x) there corresponds a point in (x′), and
conversely. To lines correspond conics, etc. By this construction there is
established a general quadratic transformation between two planes, with
distinct real and fundamental points and lines in both planes. On page
295, Steiner indicates the quadratic transformation between two spaces,
and in a footnote he . . . clearly [realises] the possibility of transforma-
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tions of a higher order, including Cremona transformations beyond the
quadratic.

Further discussion of Steiner and Poncelet’s work with quadratic transformations
is found in [24]. In this article, the authors discuss the different methods by which
Steiner and Poncelet established quadratic transformations and their keen interest
in doing so. It is again noted that Steiner appeared to anticipate more general
transformations than quadratic ones. Skew projection is not mentioned specifically
but perhaps one can infer that skew projection was just one of the means by which
Steiner and Poncelet effected a quadratic transformation.

1.3 Skew projection

Previously, we have mentioned skew projection as merely an abstract concept. In
this section, we will explain the construction so that the reader will not only under-
stand skew projection in more concrete terms but also in the form relevant to this
thesis. In the following, refer to Figure 1.3 for reference and note that the proof of
assertions made in this set-up will be given in Section 3.1.

To construct a skew projection, we begin with three mutually skew – that is,
non-intersecting – lines in three-dimensional space. Let the lines be called l, m, and
n. Figure 1.3 is drawn in three-dimensional Euclidean space R3 but the construction
also holds in the projective space PG(3,R) (projective geometry will be covered in
more detail in Section 2.1). From a point on l, call it P , we can always construct a
unique transversal, tP , to all three lines. This transversal will intersect a fixed plane
at a point, call it QP . Skew projection is the mapping P 7→ QP . We are interested
in skew projection because as we move P (linearly) along l, the point QP traces a
conic (conics will be covered in Section 2.2). This construction can be considered
as incidence geometry because we are only considering points and lines.

The generation of the conic is at first counter-intuitive and moreover, it is not
immediately obvious how the conic has been generated. The transformation that is
taking place cannot be a collineation (more on these in Section 2.2), because if so,
the degree of the curve would be preserved (that is, a collineation cannot map a line
to a conic). It would appear that we have generated a conic without intersecting a
plane with a cone or by solving an equation (two means by which a conic is usually
generated). We have also derived a correspondence between a line and a conic,
which shows that the group of the line and the conic is the same. This makes skew
projection very interesting.
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Figure 1.3: A skew projection. Note that the red dashed line indicates the locus of
the point QP under the skew projection P 7→ QP (that is, the red dashed line shows
how the point QP moves as we move P ). In this case, the conic generated by skew
projection is a hyperbola (a non-degenerate conic).

Figure 1.4: We can view this set-up as something of a ‘degenerate’ skew projection.
Here, the lines l, m, n meet the underlying plane z = 0 in three collinear points.
In this case, the locus of the point QP is a line in the underlying plane, so the
conic generated is two intersecting lines (a degenerate conic). This may not be
immediately obvious from the picture, but we will show this in Theorem 4.3.10.



Chapter 2

Background information

In this chapter, we survey the background theory that will be necessary to proceed
to the main results. We provide a brief introduction to projective geometry and
then introduce conics, forms, reguli, and quadrics. Finally, we give a brief overview
of group actions.

2.1 Projective geometry

Projective geometry grew out of a desire to resolve Euclid’s fifth postulate. Euclid
established (that which came to be known as) Euclidean geometry with the following
five postulates, appearing first in The Elements around 300 BC [14]:

1. To draw a straight line from any point to any other;
2. To produce a finite straight line continuously in a straight line;
3. To describe a circle with any centre and distance;
4. That all right angles are equal to each other; and
5. That, if a straight line falling on two straight lines make the interior angles

on the same side less than two right angles, if produced indefinitely, meet on
that side on which are the angles less than the two right angles.

From the beginning, the fifth postulate was not well received. Euclid himself proved
the first 28 propositions of The Elements without it and through the years many
mathematicians provided (what were later realised to be) ‘false proofs’ of the pos-
tulate. The fifth postulate is sometimes stated as Scottish physicist and mathem-
atician John Playfair’s formulation (1795), Through a given point, not on a given
straight line, can be drawn only one straight line parallel to the given line (although
this formulation has actually been known since Proclus, a philosopher from the 5th
Century BC). Proclus showed that a proof given by Ptolemy to be false and then
gave his own false proof. The Italian geometer Girolamo Saccheri gave his false proof
in 1697. He assumed the fifth postulate false, derived many results of non-Euclidean
geometry, constructed a ‘point at infinity’, and inadvertently discovered projective
geometry [14].

7
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Figure 2.1: Train tracks appearing to meet at the horizon. In projective geometry,
we define this perceived point of intersection as a point on the line at infinity. Source:
[27]

In Euclidean geometry, parallel lines by definition do not intersect. However
in projective geometry, parallel lines do intersect – very far away. More precisely,
parallel lines of the Euclidean plane intersect at the ‘line at infinity’, a line that is
‘added’ to Euclidean space. A heuristic way of understanding the construction is
to recall how, for example, (parallel) train tracks appear to come together at the
horizon (an indefinitely long distance away), as can be seen in Figure 2.1.

But why consider projective geometry at all? For one thing, it came as an inev-
itable result of the work of previous mathematicians to resolve the fifth postulate –
failing this, they considered the implications of a geometry without it. Projective
geometry offers some advantages to Euclidean geometry, especially when general-
ising results. When commenting on Desargues’s work in projective geometry, Boyer
and Merzbach expressed the opinion that ‘. . .projective geometry had a tremend-
ous advantage in generality over. . . metric geometry. . . for many special cases of a
theorem blend into one all-inclusive statement’ [7]. Whichever geometry a math-
ematician chooses to use is up to personal preference and the problem at hand. As
Henri Poincaré noted, ‘One geometry cannot be more true than another; it can only
be more convenient’ [13]. For us, projective geometry offers a unified view of conics
which we will use to our advantage.

This treatment of projective geometry follows Rey Casse’s textbook [9], Chapters
2 and 3. As a preliminary step, we begin by creating the extended Euclidean plane
(EEP), an extension of R2. In the EEP, a line l is the set containing l and all
Euclidean lines parallel to l: we call this a ‘pencil’ of parallel lines. To each pencil
we add P∞, the ‘point at infinity of the pencil’. The lines of the pencil intersect at
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Figure 2.2: A visualisation of the Extended Euclidean Plane. The three blue lines
are parallel lines in the Euclidean plane and they intersect at one point on the line
at infinity (red curve).

P∞. We call l with its point at infinity an ‘extended line’, denoted l∗, and distinct
pencils of lines have distinct points at infinity. The set of all points at infinity is the
‘line at infinity’, denoted l∞.

We can more rigorously define the EEP as a geometric triple (P ,L, I) where P is
the set containing the points of R2 and all points at infinity, L is the set containing
the extended lines and the line at infinity, and I is an incidence relation. For the
incidence relation I, we stipulate that a point P not at infinity lies on an extended
line l∗ if and only if P lies on l; a point at infinity P∞ lies on an extended line l∗ if
and only if P∞ is the point at infinity for the pencil l; and all the points at infinity
lie on the line at infinity.

We can also generalise the notion of the EEP to higher dimensions, in particular,
we can extend R3. The extended three-dimensional Euclidean space, which we call
ES3, is similar to the EEP, except that we have the additional structure of a ‘plane at
infinity’. Here ‘S3’ alludes to the more general case of an r-dimensional projective
space Sr (which we will see later in this section). In ES3, a plane Π is the set
containing Π and all Euclidean planes parallel to Π. We call this a ‘pencil’ of
parallel planes. A line l is the set containing l and all Euclidean lines parallel to
l. We call this a ‘bundle’ of parallel lines. The plane Π with its points and lines
at infinity is called an ‘extended plane’ Π∗ and each pencil of parallel planes has
a unique line at infinity. The plane at infinity is itself a geometric triple (P ,L, I)
with P being the points at infinity, L being the lines at infinity, and I the inherited
incidence relation. To summarise, points are the points of R3 and the points of the
plane at infinity, planes are pencils of planes with the plane at infinity, lines are
bundles of lines with the lines of the plane at infinity, and incidence is inherited.

There are some properties of the subspaces of ES3 which are worth mentioning.
Points, lines, and planes are the proper subspaces of ES3 and the trivial subspaces
are the empty set ∅ and ES3. For a subspace S, its dimension is denoted dim(S).
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S dim(S)
{point} 0
{line} 1
{plane} 2

∅ −1
ES3 3

Table 2.1: The dimensions of the proper and trivial subspaces of ES3.

The dimension of the proper and trivial subspaces are listed in Table 2.1. For
two subspaces S and S ′, the span of the two subspaces is the intersection of all
subspaces of ES3 containing them and is denoted 〈S, S ′〉. Two subspaces intersect
in a subspace and the Grassmann identity holds: for every two subspaces S and S ′

of ES3, we have

dim〈S, S ′〉 = dim(S) + dim(S ′)− dim(S ∩ S ′). (2.1)

More generally, we have the following axioms to define an r-dimensional project-
ive space Sr, for r > 2, which can be found in [9] (Definition 3.7).

1. Sr is a set whose elements are called points;
2. There exists subsets Sh of Sr for every integer h and Sh is a subspace of

dimension h;
3. There is a unique subspace S−1 of Sr, called the empty set and denoted ∅.

The other trivial subspace is the whole space Sr and all other subspaces of Sr
are proper subspaces.

4. Points are the only subspaces with dimension zero;
5. Sr is the unique subspace of dimension r;
6. If Sh and Sk are two subspaces of Sr, then Sh ⊆ Sk if and only if h 6 k and
Sh = Sk if and only if h = k;

7. Given two subspaces Sh and Sk of Sr, their intersection will be contained in
Sr;

8. Given two subspaces Sh and Sk of Sr, their span 〈Sh, Sk〉 is the intersection of
all subspaces containing Sh and Sk. If Sh ∩ Sk = Si and 〈Sh, Sk〉 = Sc, then
h+ k = i+ c;

9. (Fano’s postulate) Every one-dimensional subspace of Sr contains at least 3
points.

Thus, as a result of these axioms, we acquire a simpler formulation of the pro-
jective plane Π as a set P of points and a set L of subsets of P , called lines, such
that: every two points contain a unique line; every two lines contain a unique point;
there are at least three non-collinear points in the plane; and there are at least
three points on each line. The smallest projective plane is the so-called Fano plane,
containing seven points and seven lines (see Figure 2.3).

We have heretofore introduced abstract projective spaces. The work in this
thesis is conducted in a projective space over a field, that is an (n− 1)-dimensional
vector space over a field. This is referred to notationally as PG(n,F), where n is the
dimension of the projective space and F is the underlying field. Most of the work
in this thesis is done in PG(2,R) and PG(3,R).
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Figure 2.3: The Fano Plane, the smallest projective plane [3].

We can think of PG(2,R) as two-dimensional Euclidean space extended by the
added line at infinity, z = 0. The point (x, y, z) in PG(2,R) is the same point
as p(x, y, z) = (px, py, pz), for some p ∈ R\{0}, so scalar multiples of points are in
equivalence classes. The point (0, 0) in Euclidean two-dimensional space is identified
with the point (0, 0, 1) in PG(2,R) but the point (0, 0, 0) does not exist in PG(2,R).
More generally, we identify a point (x, y) from R2 with the point (x, y, 1) in PG(2,R)
and likewise, we identify the projective point (x, y, z), z 6= 0, with a Euclidean point
by dividing through by z:

(x, y, z) 7→ (X, Y ) =
(x
z
,
y

z

)
.

Note that any projective point (x, y, 0) is on the line at infinity and therefore does
not have an equivalent Euclidean point. PG(3,R) is similar except that points now
have the form (w, x, y, z).

One final word on projective spaces. There is a remarkable result in projective
geometry, that the subspaces of a projective space have a dual configuration. This
is known as the Principle of Duality. We state these principles as they relate to
PG(2,R) and PG(3,R), following Theorems 2.11 and 3.4 in [9].

Theorem 2.1.1 (The Principle of Duality in PG(2,R)). If T is a theorem valid in
PG(2,R) and T ′ is the theorem obtained by interchanging points for lines, collinear-
ity for concurrency, and joins for intersections, with all the necessary grammatical
adjustments, then T ′ is a valid theorem in PG(2,R), which we call the dual theorem.

Theorem 2.1.2 (The Principle of Duality in PG(3,R)). If T is a theorem valid in
PG(3,R) and T ′ is the theorem obtained by interchanging points for planes, lines for
lines, collinear points for planes in a pencil, and joins for intersections, with all the
necessary grammatical adjustments, then T ′ is a valid (dual) theorem in PG(3,R).

2.2 Conics

Mathematicians have been studying conics since, it is believed, Ancient Greece. The
first work on conics is believed to have been written by Menaechmus (ca. 300 BC)
[7], although the manuscript has not survived, and his work was continued by Eu-
clid, Archimedes, and most notably Apollonius of Perga, who wrote eight volumes
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on conics. Around AD 1000 the Persian mathematicians studied conics, including
Al-Kuhi and Omar Khayyám. Another 600 years after this, the European math-
ematicians began to study conics, including Johannes Kepler, Girard Desargues,
Blaise Pascal, René Descartes, Pierre Fermat, John Wallis, and Jan de Witt. An
influential work on the European studies of conics was Apollonius’s eight volume
work (we know, for example, that Fermat studied this work). Hence, we know a lot
about conics. Yet it is still not immediately obvious how a conic is generated by
skew projection and this makes skew projection particularly interesting.

Conic sections usually arise as the intersection of a plane with a cone. There are
three non-degenerate conics – ellipses, hyperbolas, and parabolas – and there are
three degenerate conics – points, intersecting lines, and double-lines. In projective
coordinates, conics satisfy the equation

Ax2 +Bxy + Cy2 +Dxz + Eyz + Fz2 = 0 (2.2)

(note that by setting z = 1 one retrieves the equation for a conic in Euclidean
space). This conic equation is in homogeneous form. Let f be a polynomial of degree
n in three variables. Then we call f(x, y, z) =

∑n
i,j=1 aijx

iyjzn−i−j homogeneous,
meaning that the total power of the exponents in each term of the sum is constant
and equal to n. This definition naturally generalises to polynomials of degree n in
m variables.

Example 2.2.1. Consider the polynomial f(x, y, z) = x2 + 2xy + 4z2. Then f
is homogeneous because each term has total power two. Now consider g(x, y) =
x2 + 2xy + 4. We see that g is not homogeneous because the last term 4 has total
power zero, whereas the other two terms have total power two.

Let f be a polynomial in Fn. The projective completion of f is f̃ ∈ PG(n,F),
in which the ‘additional variable’ z is used to balance the polynomial, in the sense
that f̃ becomes homogeneous.

Example 2.2.2. The polynomial f(x, y) = x2+y2 has projective completion f̃(x, y, z) =
x2 + y2. There is no change because f is already homogeneous. However, consider
the polynomial g(w, x, y) = w2 + 2x2 + 4y + 1. Then g has projective completion
g̃(w, x, y, z) = w2 + 2x2 + 4yz + z2, where 4y 7→ 4yz and 1 7→ z2 to ensure that the
total power of each term is constant.

Back to conics. Up to a projective transformation, there are five different types
of conics in projective space, four degenerate and one non-degenerate (for more
information, see [6], Theorem 5.1, and Figure 2.4). They are:

1. x2 + y2 = 0, a point;
2. x2 = 0, a double-line;
3. x2 − y2 = 0, two distinct lines;
4. x2 + y2 + z2 = 0, the empty set; and
5. x2 + y2 − z2 = 0, the circle.

Note then that the circle is the only non-degenerate second degree curve, up to
transformation. To the Euclidean mindset, this may at first seem odd. Since pro-
jective spaces have more symmetry than Euclidean space, the four non-degenerate
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Euclidean conics most people are familiar with (circles, ellipses, parabolas, hyper-
bolas) are equivalent up to transformation of their defining equations. In projective
geometry, we often consider objects up to transformation, specifically, up to collin-
eation. A collineation is an injective map between projective spaces which preserves
collinearity, that is, the images of collinear points are collinear. As such, a col-
lineation will preserve any property that can be represented by a linear map, for
example, a collineation can be used to scale an equation or as a change of basis.

This brings us to the following theorem:

Theorem 2.2.3. The group of collineations of PG(2,R) is PGL(3,R).

Here, PGL(3,R) is the projective general linear group (for more information,
see Section 2.6). We take this theorem without proof, however, we will provide an
example.

Example 2.2.4. Consider the two conics C1 : x2 + 2xy+ 4z2 = 0 and C2 : x2 + y2−
z2 = 0. Then the matrix M ∈ PGL(3,R) given by

M =

 1 0 0
0 0 1

2

−1 1 0


is a collineation mapping C1 to C2. To see this, first recognise that we can represent

the conic C1 by the matrix A1 =

1 1 0
1 0 0
0 0 4

:

[
x y z

] 1 1 0
1 0 0
0 0 4

xy
z

 = x2 + 2xy + 4z2.

Now,

MA1M
> =

 1 0 0
0 0 1

2

−1 1 0

1 1 0
1 0 0
0 0 4

1 0 −1
0 0 1
0 1

2
0

 =

1 0 −1
0 1 0
1 0 −1

 = A2,

which is a representative matrix for C2:

[
x y z

] 1 0 −1
0 1 0
1 0 −1

xy
z

 = x2 + y2 − z2.

Projective space provides us with unique insight into the three different non-
degenerate conics (the ellipse, parabola, and hyperbola): we can distinguish each
non-degenerate conic by the number of times it intersects the line at infinity.

In PG(2,R), the ellipse has equation x2

a2
+ y2

b2
= z2. By substituting z = 0, we

see that for real x, y, they must be both also equal to zero. The point (0, 0, 0), as
previously mentioned, does not exist in PG(2,R), so an ellipse does not intersect the
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A

B

C D

Figure 2.4: The four non-empty projective conics – A: a point, B: a doubled line,
C: two distinct lines, and D: the circle.

line at infinity. The parabola yz = ax2 intersects the line at infinity when x = 0,
so the parabola has a unique intersection with the line at infinity, (0, 1, 0). The

hyperbola, x2

a2
− y2

b2
= z2, has two points of intersection with the line at infinity,

(1,± b
a
, 0).

The conics generated by skew projection are interesting because they do not
appear to be generated by a cone nor have they been forced by an equation. Rather,
as we will see in Section 4.3, the conics are arising from a quadric surface. In order to
understand this connection, in the following sections we will consider forms, reguli,
and quadrics.

2.3 Forms

In this section, we will outline the necessary background on forms. Forms will play
a large role in deriving the major results of this thesis as they are inextricably
linked to quadric surfaces (see Section 2.5). Two important theorems in this thesis,
Sylvester’s Law of Inertia (4.1.2) and Witt’s Theorem (4.3.3), are theorems on forms.

A form is a mapping from a vector space to a field. A bilinear form B over
a vector space V over a field F is a map B : V × V → F that is linear in each
coordinate, that is, such that for every λ, µ ∈ F,

1. B(λx+ µy, z) = λB(x, z) + µB(y, z) and
2. B(x, λy + µz) = λB(x, y) + µB(x, z).

Furthermore, a bilinear form is called symmetric if B(x, y) = B(y, x).

Example 2.3.1. Consider the bilinear form B defined by B((x1, y1, z1), (x2, y2, z2)) =
x1z2 + z1x2 − 2y1y2. Then B is indeed linear in each coordinate:

B(λ(x1, y1, z1) + µ(x2, y2, z2), (x3, y3, z3))

=B((λx1 + µx2, λy1 + µy2, λz1 + µz2), (x3, y3, z3))

=(λx1 + µx2)z3 + (λz1 + µz2)x3 − 2(λy1 + µy2)y3

=λ(x1z3 + z1x3 − 2y1y3) + µ(x2z3 + z2x3 − 2y2y3)
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=λB((x1, y1, z1), (x3, y3, z3)) + µB((x2, y2, z2), (x3, y3, z3))

Linearity in the second coordinate is similar. Moreover, B is symmetric, as
B((x1, y1, z1), (x2, y2, z2)) = x1z2 + z1x2 − 2y1y2 and B((x2, y2, z2), (x1, y1, z1)) =
x2z1 + z2x1 − 2y1y2 = x1z2 + z1x2 − 2y1y2.

A quadratic form Q is a map Q : V → F such that
1. Q(λv) = λ2Q(v), λ ∈ F and
2. There is a unique associated symmetric bilinear form B such that
B(u, v) = Q(u+ v)−Q(u)−Q(v).

For a quadratic form over fields not of characteristic two, we have

B(u, u) = Q(u+ u)−Q(u)−Q(u)

=Q(2u)− 2Q(u)

=4Q(u)− 2Q(u)

=2Q(u).

This does not hold over fields of characteristic two, however, as we see in the fol-
lowing example.

Example 2.3.2. Consider the symmetric bilinear form B defined by
B((x1, y1, z1), (x2, y2, z2)) = x1x2. Suppose we take B over a field of characteristic
two. In these fields, 2 = 0 and −1 = 1. Consider the vector v1 = (1, 0, 0). Then
B((1, 0, 0), (1, 0, 0)) = (1)(1) = 1, however, 2Q((1, 0, 0)) = 0.

Example 2.3.3. Consider the quadratic form defined by Q1(w, x, y, z) = wz + xy.
Indeed, it easy to verify that Q1(λ(w, x, y, z)) = λ2Q1(w, x, y, z):

Q1(λ(w, x, y, z))

=Q1(λw, λx, λy, λz)

=λwλz + λxλy

=λ2wz + λ2xy

=λ2(wz + xy)

=λ2Q1(w, x, y, z).

It follows from computing Q1((w1, x1, y1, z1) + (w2, x2, y2, z2))−Q1(w1, x1, y1, z1)−
Q1(w2, x2, y2, z2) that Q1 has associated bilinear form defined by
B1((w1, x1, y1, z1), (w2, x2, y2, z2)) = w1z2 + z1w2 + x1y2 + y1x2.
Linearity in each coordinate is easy to verify, so B1 is indeed a bilinear form.
Moreover, B1 is a symmetric bilinear form, since

B1((w1, x1, y1, z1), (w2, x2, y2, z2))

=w1z2 + z1w2 + x1y2 + y1x2

=z2w1 + w2z1 + y2x1 + x2y1

=w2z1 + z2w1 + x2y1 + y2x1

=B1((w2, x2, y2, z2), (w1, x1, y1, z1)).
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Example 2.3.4. Another example of a quadratic form in R3 is Q2 defined by
Q2(x, y, z) = xz − y2. Once again it is easy to verify that

Q2(λ(x, y, z))

=Q2(λx, λy, λz)

=λxλz − (λy)2

=λ2(xz − y2)
=λ2Q2(x, y, z).

We find the associated bilinear form by computing Q2((x1, y1, z1) + (x2, y2, z2)) −
Q2(x1, y1, z1)−Q2(x2, y2, z2) and we see that the associated bilinear form for Q2 is
the bilinear form defined by B2((x1, y1, z1), (x2, y2, z2)) = x1z2 + z1x2 − 2y1y2, which
we recognise as the bilinear form introduced in Example 2.3.1. We have previously
shown in Example 2.3.1 that this form is linear in each coordinate, hence bilinear,
and symmetric.

We can also represent forms by a matrix (the matrix of a bilinear form is explored
in more detail in [21], Chapter 11). Suppose we have a vector space V with a
symmetric bilinear form B. Let B = (v1, ..., vn) be an ordered basis for V . Then the
bilinear form B is completely determined by its associated matrix MB, defined by

MB = (aij)
n
{i,j}=1 = (B(vi, vj))

n
{i,j}=1.

Let (v1, ..., vn) be a basis for a vector space V endowed with a bilinear form B.
Conversely, we can recover the form B from the matrix MB by computing

B(x, y) = xMBy
>,

for some x, y in V . The associated matrix of a quadratic form is the associated
matrix of the bilinear form associated with the quadratic form.

Example 2.3.5. The quadratic form w2 + x2 − y2 − z2 has associated matrix
1

1
−1

−1

 with respect to the standard basis {e1, ..., e4} for R4.

Example 2.3.6. Recall the quadratic form Q1 from Example 2.3.3. Let {e1, ..., e4}
be the standard basis in PG(3,R), where each ei is a 1× 4 row vector with 1 in the
ith column and zeros elsewhere. Then the associated matrix for Q1 with respect to
the standard basis is 

1
1

1
1

 .
The set of points P such that PQ1P

⊥ = 0 is a hyperbolic quadric in PG(3,R)
(hyperbolic quadrics will be discussed in more detail in Section 2.5).
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Example 2.3.7. Recall the quadratic form Q2 and its associated bilinear form B2

from Example 2.3.4. Q2 has associated matrix0 0 1
0 −2 0
1 0 0

 .
Recall that a matrix is symmetric if it is equal to its transpose. Thus we have

the following:

Lemma 2.3.8. A bilinear form is symmetric if and only if its associated matrix is
a symmetric matrix.

Proof. Let B be a bilinear form over a vector space V and let B = {v1, . . . , vn} be
a basis for V . The associated matrix MB of B with entries mij = B(vi, vj) will be
symmetric if and only if B(vi, vj) = B(vj, vi) for every i, j. This holds if and only
if B is a symmetric bilinear form. Thus the form B is symmetric if and only if its
associated matrix MB is symmetric. Q.E.D.

We call a bilinear form non-degenerate if the determinant of its associated matrix
is non-zero. We call two forms Q1 and Q2, having associated matrices A and B,
respectively, congruent if there exists a matrix P such that B = PAP>, and the
matrices A, B are said to be in the same congruency class. Likewise, we call two
forms Q1 and Q2, having associated matrices A and B, similar if there exists a
matrix P such that B = PAP−1, and the matrices A, B are said to be in the same
similarity class.

In this work, bilinear forms will be of the kind B : PG(3,R)× PG(3,R) → R
and quadratic forms will be of the kind Q : PG(3,R) → R (note that perturbing
the domains in this manner does not affect the form).

Let B be a bilinear form over a vector space V . Two vectors vi, vj ∈ V are said
to be orthogonal if B(vi, vj) = 0.

Example 2.3.9. Recall the bilinear form from Example 2.3.3,
B1((w1, x1, y1, z1), (w2, x2, y2, z2)) = w1z2 + w2z1 + x1y2 + x2y1. Then the points
(1, 0, 0, 1) and (−1, 0, 0, 1) are orthogonal with respect to B1, since
B1((1, 0, 0, 1), (−1, 0, 0, 1)) = (1)(1) + (−1)(1) + (0)(0) + (0)(0) = 0.

2.4 Reguli

In this section we define a regulus and give some examples. Before formally defining
the regulus, a special note should be made about transversals. A transversal is a
line that intersects each line in a system of lines once. From a fixed point on one
line in a system of two lines, there are infinitely many constructions of a transversal
to the system. However, when there are three skew lines in the system, there is only
one choice of transversal to the system from a fixed point (see Figures 2.5 and 2.6).
The uniqueness of such a transversal will be covered in Section 3.1.



18 Chapter 2. Background information

Figure 2.7: If the green lines are taken to be the set of skew lines, we have here a
regulus (red lines) and its opposite regulus (green lines) in R3.

Figure 2.5: A transversal to two lines through a fixed point P .

Figure 2.6: The unique transversal to three lines through a fixed point P .

Briefly, if l, m, n are three mutually disjoint (skew) lines, then their regulus is
the set containing their transversals, that is R(l,m, n) = {transversals to l, m, n}.

In [5], Section 2.4, reguli are defined with respect to a three-dimensional project-
ive space as being non-empty sets R of skew lines such that there exist transversals
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to R through each point of each line of R and that, vice versa, through every point
of each transversal of R there is a line of R. It is clear, then, that the regulus of the
regulus, the opposite regulus R′, is itself a regulus. But note that in an arbitrary
geometry, the opposite regulus is not always the original set of skew lines, indeed,
it is a proper superset of the original skew lines. Equality of the opposite regulus
and the three skew lines is a special property of the hyperbolic quadric (see Section
2.5).

Reguli arise in a beautiful correspondence between geometry axioms and algebra.
A theorem in [5] (2.4.3 in their text) which outlines properties of reguli is proved
using the Dandelin-Gallucci Theorem, recorded in their text as the 16 point theorem
(2.4.2). The Dandelin-Gallucci theorem requires the additional structure that the
regulus is constructed in a 3-dimensional projective space over a division ring. A
division ring is a set F with operations +, ·, such that (F,+) is a commutative group,
(F\{0}, ·) is a not necessarily commutative group, and left and right distributivity
holds ([5]). Note, of course, that R is a division ring because a field is a commutative
division ring. In [5], the Dandelin-Gallucci Theorem appears thus:

Theorem 2.4.1 (The Dandelin-Gallucci 16 point theorem). Let P be a 3-dimensional
projective space over the division ring F . Let {g1, g2, g3} and {h1, h2, h3} be sets of
skew lines with the property that each line gi meets each line hj. Then the following is
true: F is commutative (hence a field) if and only if each transversal g /∈ {g1, g2, g3}
of {h1, h2, h3} intersects each transversal h /∈ {h1, h2, h3} of {g1, g2, g3}.

Sketch of proof, following [5]. Firstly, we define the points 〈v1〉 = g1 ∩ h1, 〈v2〉 =
g1 ∩ h2, 〈v3〉 = g2 ∩ h1, and 〈v4〉 = g2 ∩ h2 (see Figure 2.8). It follows that g3 ∩ h1 =
〈av1 + bv3〉 for some a, b ∈ F\{0}. Without loss of generality, we can assume that
b = 1. Then, by replacing v1 by v′1 = av1, we have g3∩h1 = 〈v′1 +v3〉. With suitable
scaling, we can take v′1 = v1, so g3 ∩ h1 = 〈v1 + v3〉.

Similarly, we can assume that g1 ∩ h3 = 〈v1 + v2〉 and g3 ∩ h3 = 〈v3 + v4〉, so
g3 ∩ h2 = 〈v2 + av4〉 for some a ∈ F\{0}.

By assumption, each of the skew lines {g1, g2, g3} intersects {h1, h2, h3}, so g3,
h3 have the unique intersection

g3 ∩ h3 = 〈a1(v1 + v3) + a2(v2 + av4)〉 = 〈b1(v1 + v2) + b2(v3 + v3)〉.

Since v1, v2, v3, v4 are linearly independent, we have a1 = a2 = b1 = b2 and a = 1,
so we can assume g3 ∩ h3 = 〈v1 + v2 + v3 + v4〉 and g3 ∩ h2 = 〈v2 + v4〉.

Define the lines g = 〈vi + avj〉, h = 〈vl + bvk〉 for some a, b ∈ F\{0}. The
theorem then follows by showing that g∩h have non-empty intersection if and only
if ab = ba. Further detail is beyond the scope of this thesis, but briefly, it is a fact
that there is at most one line through g ∩ h1 intersecting both h2 and h3 and this
line must be g, so we find that g = 〈v1 + av3, v2 + av4〉, and by similar reasoning we
find that h = 〈v1 + bv2, v3 + bv4〉. Then computing the intersection of g and h will
show that they have a common point if and only if ab = ba, that is, the division
ring is commutative. Q.E.D.
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〈v1〉 〈v2〉

〈v3〉 〈v4〉

〈v1 + v3〉 〈v2 + v4〉

〈v1 + av3〉

g1

g2

g3

g

h1 h2

〈v1 + v2〉

〈v3 + v4〉

〈v1 + v2 + v3 + v4〉

〈v1 + bv2〉

h3 h

Figure 2.8: A reproduction of a figure from [5] (Figure 2.3) showing the set-up of
the proof of Theorem 2.4.1.

We now present the theorem on reguli from [5] (Theorem 2.4.3). It is clear
that the second and third properties of reguli in this theorem follow immediately
from Theorem 2.4.1, whilst the first property is a simple argument based on the
definitions of reguli and transversals.

Theorem 2.4.2. Let PG(3,D) be a 3-dimensional projective space over a division
ring D. Let l, m, n be three skew lines of PG(3,D). Then the following assertions
are true:

1. There is at most one regulus containing l, m, and n.

2. If D is noncommutative then there is no regulus in PG(3,D).

3. If D is commutative, then there is exactly one regulus through l, m, and n.

In our case of a projective space over R, this theorem tells us that each triple of
skew lines in R3 will determine a unique regulus. The uniqueness of the transversal
through the three skew lines l, m, n comes as a corollary of the uniqueness of the
regulus determined by l, m, n.

Another approach to constructing a regulus is taken in [18] (Section 83.1). Here
the regulus is constructed using a projectivity or projective correspondence. Project-
ive correspondences will not be covered in this thesis in detail, but briefly, subsets
in a projective space are said to have a projective correspondence between them if
there exists a projective transformation between them. If a projectivity is estab-
lished between the planes of pencils of two skew lines in PG(3,R), then the regulus
is thus defined as the set of lines which are the intersections of corresponding planes
in the projectivity (see Figure 2.9).
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B3

A3
A2

a

B2

b

A1

B1

l3 l2 l1

c

Figure 2.9: A reproduction of a figure in [18] (Figure 83.2) which presents the
construction of a regulus through projectivity. Here a and b are skew lines and the
points A1, A2, A3 on a correspond to the points B1, B2, B3 on b via a projectivity.
The lines l1, l2, l3 are skew and the transversal c to these lines is skew to a and b.
Continuing in this manner, we form a regulus.

2.5 Quadric surfaces

A quadric surface or quadric is the kernel of a quadratic form (the set of points
mapped to zero by the quadratic form). If we have a quadratic form Q over a
projective space PG(3,F), then we call the set of points (w, x, y, z) ∈ PG(3,F) such
that Q(w, x, y, z) = 0 a projective quadric. If Q is instead over Euclidean space
Rn, then we call the set of points (x, y, z) ∈ Rn such that Q(x, y, z) = 0 an affine
quadric. In this section, we will begin by working through some examples of affine
and projective quadrics and proceed to explain various presentations of quadrics as
they appear in the literature.

Example 2.5.1. An example of a projective quadric is the elliptic quadric, the set
of points which satisfies the equation w2 + x2 + y2− z2 = 0. A point on this surface
is (1, 0, 0, 1). We will see in Theorem 4.1.1 that the elliptic quadric is one of only
two non-empty non-degenerate quadrics in PG(3,R), up to projective equivalence.

Example 2.5.2. The affine equivalent of Example 1 is the ellipsoid, the set of points
satisfying the equation −x2 − y2 − z2 + 1 = 0. A point on this surface is (1, 0, 0).
Note that this point corresponds to the projective point (1, 0, 0, 1).

A neat construction of the hyperbolic quadric can be found in [5] (Theorem
2.4.4). Take S1 = 〈(1, 0, 0, 0), (0, 1, 0, 0)〉, S2 = 〈(0, 0, 1, 0), (0, 0, 0, 1)〉, S3 =
〈(1, 0, 1, 0), (0, 1, 0, 1)〉 to be the three fundamental skew lines of PG(3,R). As
was discussed in Section 2.4, three skew lines uniquely determine a regulus. Let
the regulus determined by the three fundamental skew lines be R. Then the set of
points on R satisfy
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Q = {(w, x, y, z) ∈ PG(3,R) : xw = yz}.

Each point of Q satisfies the quadratic equation xw = yz and we call Q the hyper-
bolic quadric of PG(3,R). The proof supplied in [5] is relatively simple, however,
it relies on properties of reguli that were proved using the more powerful Dandelin-
Gallucci theorem (Theorem 2.4.1). It is clear from this construction that the hyper-
bolic quadric contains lines. When we classify the non-empty non-degenerate pro-
jective quadrics in Theorem 4.1.1, we will see that the two distinct non-degenerate
non-empty quadrics up to projective equivalence differ in that one contains lines
(the hyperbolic quadric) and one does not (the elliptic quadric).

The quadric in [18] (Section 81.1) is constructed by a set of skew lines and their
transversals (at first not stating these to be reguli). Transversals l′, m′, n′ are
constructed to three skew lines l, m, n through three distinct points on n and then
transversals to the transversals l′, m′, n′ are constructed. The intersection of these
transversals are points lying on the surface xw− yz, a quadric surface. The surface
contains two systems of generators (lines lying in the surface), one system containing
l, m, n, the other containing l′, m′, n′, and any line in one system of transversals
intersects any line in the other system of transversals – that is, the generators are
reguli.

2.6 Group actions

Many of the proofs in this thesis rely on group actions. It will be helpful to give
brief definitions of the most important concepts, however more detailed discussions
can be found in various introductory textbooks, for example [2] (Chapters 2, 5, and
6).

Let G be a group and let X be a set. Let g ∈ G, x ∈ X and let 1G denote the
identity element of G. Then G acts on X if there is a map G×X → X such that:

1. x1G = x for all x ∈ X, and
2. xgg

′
= (xg)g

′
for all g, g′ ∈ G and for all x ∈ X.

We call the map x 7→ xg the action of G on X. Note that we denote group actions
exponentially, whereas some introductory texts, such as [2], denote them multiplic-
atively.

Example 2.6.1. Let G be a group and let X be a set. Then G acts on X by right
multiplication, defined by xg = xg, for every g ∈ G and for every x ∈ X. To see
that this is indeed an action, we check the two conditions:

1. We have x1G = x1 = x, and
2. (xg)h = (xg)h = xgh, while xgh = xgh.

Both conditions are satisfied, so right multiplication is a group action for every group
G on every set X.

We can consider how a group action ‘moves’ the elements in the set it acts on.
As such, let X be a set. The orbit of an element x ∈ X with respect to a group G
is the set of elements x′ ∈ X such that x′ = xg for some g ∈ G. We often denote
this set xG, that is xG = {x′ ∈ X : x′ = xg for g ∈ G}. Informally, this is the set of
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all the elements to which an element x in a set X is mapped by the group G under
its action on X. We call the action of a group G on a set X transitive if X has
only one orbit under G. Another way of stating this is that for any x, y ∈ X, there
exists some g ∈ G such that xg = y. It follows, then, that a transitive action has
only one orbit.

Example 2.6.2. We now give a more concrete example of a group action. Let
G = S2 be the permutation group of order two and let X = {1, 2}. Let’s examine
the action of G on X by permutation. G consists of the two permutations: (), the
identity permutation that fixes 1, 2, and (12), the permutation taking 1 to 2 and 2
to 1.

Consider how G acts on the element 1. Under the permutation (), we see that
1() = 1() = 1 and under the permutation (12), we see that 1(12) = 1(12) = 2. So
the orbit of 1 under the action of G by permutation is {1, 2}, that is, 1G = {1, 2}.
Similarly, it is clear that 2G = {1, 2}, so 1G = 2G and the action has only one orbit.
It is clear then that the action of G by permutation is transitive: the permutation
(12) takes 1 to 2 and 2 to 1, so for every two elements of X, there is an element of
G that maps these elements to each other.

Some elements of G will fix certain elements of X. This is particularly interesting
because many elements other than the identity could fix elements of the set. The
stabiliser of an element x ∈ X under the action of a group G is the set of all elements
in the group which fix x. We often denote this set Gx, that is, Gx = {g ∈ G :
xg = x}.

Example 2.6.3. Recall Example 2.6.2. It is clear from our previous computations
that the element 1 is fixed only by the identity permutation, so G1 = {()}, and it is
also clear that the element 2 is fixed only by the identity permutation, so G2 = {()}.
So only the identity permutation fixes each element of X.

Example 2.6.4. Let G be a group, X be a set, and define the trivial action by
xg = x for every x ∈ X, g ∈ G. Clearly, x1G = x and xg

h
= xh = x = xgh for

every g, h ∈ G, so the trivial action does indeed define an action of G on X. Since
every element of G fixes every element of X, we have for every x ∈ X that Gx = G.
Quite the opposite of Example 2.6.3.

There are two matrix groups which will be of particular importance to this thesis.
These are the general linear group and the projective general linear group. We will
give a definition and examples of both of these.

The general linear group, denoted GL(n,F), is the group of n × n invertible
matrices over a field F.

Example 2.6.5. The upper triangular matrices U =


∗ ∗ . . . ∗
0 ∗ . . . ∗
... 0

. . .
...

0 0 . . . ∗

 over R are in-

vertible n× n matrices, so the upper triangular matrices are elements of GL(n,R).
In fact, the upper triangular matrices are a subgroup of GL(n,R) because the
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product of two upper triangular matrices is an upper triangular matrix and the iden-
tity matrix is an upper triangular matrix.

The projective general linear group, denoted PGL(n,F), is the group of n × n
invertible matrices over a field F such that two matrices are considered equal if they
are scalar multiples of each other. As such, PGL(n,R) is the quotient of GL(n,R)
by scalar matrices λI, for some λ ∈ R\{0}.

Example 2.6.6. The identity matrix I =


1 0 0 . . . 0
0 1 0 . . . 0
... 0

. . .
...

0 0 . . . 1

 over R is an invert-

ible n × n matrix, so it is an element of both GL(n,R) and PGL(n,R). However,
in PGL(n,R), any scalar multiple of I is considered equal to I, that is, I = λI for
any non-zero λ ∈ R.



Chapter 3

Skew projection

In this chapter, we provide a full proof of the earlier assertions that skew projection
generates a conic via a quadric. We will prove the existence of the unique transversal
through three skew lines and the existence of a hyperbolic quadric generated by three
skew lines and their regulus. We will then classify the projective quadrics up to
projective equivalence, via Sylvester’s Law of Inertia, and finally we will determine
the type of conic generated by skew projection via Witt’s Theorem.

Firstly, it could be helpful to the reader to develop an overview of the problem.
Skew projection consists of three skew (non-intersecting and, in the affine case, non-
parallel) lines and their unique transversal through a given point on one of the lines.
Moreover, three skew lines generate a unique regulus, the set of transversals to three
skew lines. In this case, the opposite regulus, transversals to the regulus, will consist
of the given three skew lines and additional transversals to the regulus. The regulus
and opposite regulus which we have now constructed generate a hyperbolic quadric.
The lines of the hyperbolic quadric fall into two equivalence classes, determined
by the two reguli. Planes intersect the quadric in a conic and this is the conic we
generate through skew projection.

3.1 A more rigorous proof of the set up

Recall skew projection as outlined in Secton 1.3, that is, we have three mutually
skew lines l, m, n and from a point P on l we construct the unique transversal tP
to all three lines. The transversal tP will intersect a fixed plane π at a point, call it
QP . Skew projection is the mapping P 7→ QP .

Let P be a point on l. The lines l, m are skew, so they do not intersect in any
point, hence the point P cannot be on m. Using the Grassmann identity (2.1), we
argue that P and m span a plane πP :

dim(P ∩m) = −1 so,

dim(〈P,m〉) = dim(P ) + dim(m)− dim(P ∩m)

25
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Figure 3.1: A point and a line with empty intersection in projective space span a
plane.

=0 + 1− (−1)

=2,

hence P and m span a plane πP because the subspaces of PG(3,R) with dimension
2 are planes (see Figure 3.1).

We want πP to meet the line n in a point. Firstly, note that if n is contained
in πP , then m and n must meet because πP is the span of P and m – that is, the
intersection of all subspaces of PG(3,R) containing both P and m. But this is a
contradiction, since m and n are defined to be skew. So n is not contained in πP
and as a result either n and πP meet in a point or they do not meet at all. Thus,
we show the following lemma:

Lemma 3.1.1. A line in PG(3,R) is either contained in a plane or it intersects
the plane in one point.

Proof. Let l be a line in PG(3,R) and let π be a plane. There are three cases: l is
disjoint from π, l is contained in π, or l intersects π in a point. If l is disjoint from
π, then l ∩ π = ∅, so by the Grassmann identity (2.1),

dim(〈l, π〉) = dim(l) + dim(π)− dim(l ∩ π)

= 2 + 1− (−1)

= 4,

and we cannot have a subspace of dimension greater than three. If l is contained in
π, then l ∩ π = π, so

dim(〈l, π〉) = dim(l) + dim(π)− dim(l ∩ π)
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Figure 3.2: A line in projective space either intersects a plane in one point or lies in
the plane.

= 2 + 1− 2

= 1,

which is valid. Finally, if l intersects π in a point, then l ∩ π = Q for some point Q,
so

dim(〈l, π〉) = dim(l) + dim(π)− dim(l ∩ π)

= 2 + 1− 0

= 3,

which is valid. Hence, any line in PG(3,R) is either contained in a plane or it
intersects the plane in one point (see Figure 3.2). Q.E.D.

Hence by Lemma 3.1.1, πP and n meet in a point, say NP . Since l is skew to
n, the points P and NP are distinct and span a line. This is why we wanted πP to
meet the line n in a point: we can now construct a line, call it tP , and we claim that
tP = 〈P,NP 〉 is a transversal to l, m, n. To see this, we need to check the following
three claims:

Claim 1. The transversal tP is contained in πP .

Proof. The point P is contained in πP since πP is the span of P and the line m.
The point NP is contained in πP because NP is the intersection of πP with the line
n. Since both P and NP are contained in πP , it follows that tP is contained in
πP . Q.E.D.

Claim 2. The transversal tP does not coincide with m or n.

Proof. The transversal tP does not coincide with n because tP is the span of P , a
point on l, and NP , a point on n, and l, n are skew lines. So tP is the span of
two points on two distinct lines, hence tP does not coincide with either line. The
transversal tP does not coincide with m because m is skew to both l, n but tP meets
l, n in one point each. If tP were to coincide with m, then m would meet l, n in
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one point each, which contradicts the skewness of l, m and n, m. Hence tP does not
coincide with m. Q.E.D.

Claim 3. The transversal tP meets both m and n.

Proof. The transversal tP meets n because tP is the span of the points P and NP , a
point on the line n. Claim 2 tells us that tP does not coincide with n, so tP meets n
at the point NP only. To show that tP meets m, it is sufficient to show that tP and
m both lie in the plane πP . Projectively, coplanar lines either coincide or intersect.
It again follows from Claim 2 that tP does not coincide with m, so tP meets m in
one point. Q.E.D.

This proves the existence of the transversal tP . The uniqueness of tP is inherent
in its construction: the point P is given and the point NP is the unique point of
intersection of the plane πP (itself uniquely determined by P and the line m) and the
line n. These two distinct points P , NP contain a unique line, hence the transversal
tP is unique.

This gives us the following lemma:

Lemma 3.1.2. Let l, m, n be three skew lines in PG(3,R) and let P be a point on
l. Then there exists a unique transversal to l, m, n through the given point P .

It is interesting to note that this problem appears as an exercise (3.1.5) in [9],
which also indicates the link between transversals, reguli, and the two parallel classes
of lines which generate the quadric:

Let l, m, n be three mutually skew lines (i.e. no two of the lines intersect)
of a projective space S3 of dimension 3. Show that through each point
of l, there exists a unique line r which intersects both m and n.

Such a line r is called an (l,m, n)-transversal. The set R of all
(l,m, n)-transversals is called a regulus, and is sometimes denoted by
R(l,m, n). Prove that no two distinct (l,m, n)-transversals intersect in
a point.

3.2 Proof of existence of a hyperbolic quadric

The aim of this section will be to prove that three skew lines and their regulus
generate a unique quadric in PG(3,R). As will be seen in Section 4.1, there are,
up to projective equivalence, two non-empty non-degenerate quadrics of PG(3,R),
the hyperbolic and the elliptic. As aforementioned in Section 2.5, the hyperbolic
contains lines, the elliptic does not. Hence a regulus and its complementary regulus
generate a hyperbolic quadric. This is an important result, however in this section
we emphasise that the form generated by three skew lines and their regulus is a
quadratic form – a result which in itself is quite astounding.

We begin by showing that the action of PGL(4,R) on triples of skew lines is
transitive (recall the definition of transitive actions in Section 2.6). Proving this
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will show that any triple of skew lines will be sent to a predetermined triple under
the action of PGL(4,R).

Proposition 3.2.1. The action of PGL(4,R) on triples of skew lines is transitive.

Proof. In order to prove Proposition 3.2.1, we will first show that the action of
PGL(4,R) is transitive on lines, then on pairs of skew lines, and finally, on triples
of skew lines. This amounts to proving the following claims:

Claim 4. PGL(4,R) is transitive on lines.

Proof. We take l1 = 〈e1, e2〉 to be our ‘first fundamental line’. We can
represent l1 as the row space of the 2× 4 matrix

[
I O

]
, where I is the

2×2 identity matrix and O is the 2×2 zero matrix. Here representation
by row space indicates that l1 has the same number of non-zero rows as[
I O

]
. An arbitrary line m1 in PG(3,R) can be represented by the row

space of the 2 × 4 matrix
[
A B

]
, where A, B are 2 × 2 matrices with

full rank.

Let M =

[
A B
C D

]
, where C, D are any full rank 2×2 matrices. Then

[
I O

] [A B
C D

]
=
[
A B

]
,

so we can map l1 to any line m1 in PG(3,R) by an element of PGL(4,R).
Clearly, there exists matrices C, D such that M is invertible. Hence
PGL(4,R) is transitive on lines. Q.E.D.

Remark 3.2.2. With notation as defined in Claim 4, let M1 =

[
A B
C D

]−1
, then

M1 maps
[
A B

]
to
[
I O

]
. This will be useful for the next claim.

Claim 5. PGL(4,R) is transitive on pairs of skew lines.

Proof. Essentially, we will be showing that PGL(4,R) is transitive on
pairs of skew lines. We will show this by proving that the stabiliser Gl1

of l1 (as in Claim 4) in PGL(4,R) is transitive on lines skew to l1.
Firstly, we construct a line l2 that is skew to our first fundamental

line l1, that is, l1 ∩ l2 = ∅. An equivalent condition is that l1, l2 span

the whole space, which would mean that the matrix

[
l1
l2

]
has full rank

(here we are viewing lines as row spaces of matrices). If l2 =
[
S T

]
,

then the only necessary condition on l2 is that T has rank 2. As such,
let l2 =

[
O I

]
be our ‘second fundamental line’.

Let m1 =
[
A B

]
as in Claim 4 and let m2 =

[
C D

]
be any line

skew to m1. Consider the matrix M =

[
A O
C D

]
, where A, D are rank 2

matrices. Then [
I O

] [A O
C D

]
=
[
A O

]
≡
[
I O

]
,
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where ≡ is used to indicate equality of row space. Hence M fixes l1, so
M ∈ Gl1 .

Moreover, [
O I

] [A O
C D

]
=
[
C D

]
,

so M maps l2 to any line skew to m1. Let M1 be as in Remark 3.2.2.
Again, it is clear that M is invertible, so let M2 = M−1. Then the map-
ping M1M2 will map any pair of skew lines m1, m2 to the fundamental
pair of skew lines, l1, l2: M1 maps m1 to l1 and m2 is mapped to m2M1

(which could be anything), then M2 fixes l1 and maps m2M1 to l2. Hence
PGL(4,R) is transitive on pairs of skew lines. Q.E.D.

Claim 6. PGL(4,R) is transitive on triples of skew lines.

Proof. We now consider triples of skew lines. We need to find a third
fundamental line l3 that is skew to both l1 and l2 (where l1 and l2 are
defined as in Claim 5). The condition for three lines to be mutually skew
is simply that all three lines are pairwise skew to each other. Some line[
S T

]
will be skew to l1 if

[
I O
S T

]
has full rank. This is true when T

has full rank. The line
[
S T

]
will be skew to l2 if

[
O I
S T

]
has full rank.

This is true when S has full rank. Hence a line
[
S T

]
will be skew to

both l1 and l2 when both S and T have full rank. If we take l3 =
[
I I

]
,

it is clear that l3 satisfies these conditions.
Let m1 =

[
A B

]
and m2 =

[
C D

]
be a pair of skew lines as in

Claim 5 and let m3 =
[
E F

]
be such that m1, m2, m3 form a triple of

skew lines. Consider the matrix M3 =

[
E−1 O
O F−1

]
. Now

[
I O

] [E−1 O
O F−1

]
=
[
E−1 O

]
≡
[
I O

]
,

so M3 fixes l1. Consider also[
O I

] [E−1 O
O F−1

]
=
[
O F−1

] [
O I

]
,

so M3 also fixes l2. Hence M3 ∈ Gl1,l2 , the stabiliser of l1 and l2. Then[
E F

] [E−1 O
O F−1

]
=
[
I I

]
,

so M3 maps any line m3 to l3. Let M1, M2 be as in Claim 5. Then the
mapping M1M2M3 will map any three skew lines m1, m2, m3 in PG(3,R)
to the fundamental skew lines l1, l2, l3: M1 maps m1 to l1 and m2, m3

are mapped to m2M1, m3M1, respectively (these could be anything),
then M2 fixes l1 and maps m2M1 to l2 and m3M1 to m3M1M2 (which
still could be anything). Then M3 fixes l1, l2 and maps m3M1M2 to l3.
Hence PGL(4,R) is transitive on triples of skew lines. Q.E.D.
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Together Claims 4, 5, and 6 tell us that the action of PGL(4,R) on triples of skew
lines is transitive. Q.E.D.

Now we have shown transitivity on triples of skew lines, it remains to show that
the triple of skew lines m1, m2, m3 do indeed lie in a hyperbolic quadric (see Figure
3.3). To see this, we must first prove the following lemma:

Lemma 3.2.3. Let M be the associated matrix of a symmetric bilinear form associ-
ated with the quadric Q. Then a line m, written as the row space of a 2× 4 matrix,
lies in the quadric Q if and only if mMm> is the zero matrix.

Proof. Firstly, if a line m lies in a quadric Q, then any point P = (w, x, y, z) on
m also lies in Q. Hence Q(P ) = 0. Let {e1, . . . , e4} be the standard basis for R4,
let B be the symmetric bilinear form associated with Q, and let M be the matrix
associated with Q with respect to the standard basis. Then it is clear by definition
that

[
P
]
M
[
P>
]

= 0 if and only if P is a point on Q.
Now let u = (w1, x1, y1, z1) and v = (w2, x2, y2, z2) be points in PG(3,R) and let

m =

[
u
v

]
be a line. Then

mMm> =

[
u
v

]
M
[
u> v>

]
=

[
uM
vM

] [
u> v>

]
=

[
uMu> uMv>

vMu> vMv>

]
.

The entries uMu> and vMv> will be zero if and only if u, v are points on Q, and
then m is a line in the quadric Q. Finally, the points u, v will be orthogonal with
respect to the form Q if and only if they both lie in the quadric, in which case
uMv> = vMu> = 0. Q.E.D.

With this lemma, we can prove the following:

Theorem 3.2.4. Three mutually skew lines determine a unique (hyperbolic) quad-
ric.

Proof. Let M =

[
A B
C D

]
be the associated matrix of a symmetric bilinear form

with associated quadric Q. Then M is by construction symmetric because M is
the associated matrix of a symmetric bilinear form (Lemma 2.3.8), so A = A>,
D = D>, and C = B>. Let l1, l2, l3 be the fundamental triple of skew lines, as
given in Proposition 3.2.1. Using Lemma 3.2.3, we compute:

l1Ml>1 =
[
I O

] [ A B
B> D

] [
I O

]>
= A,
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so l1 lies in a quadric when A is the 2× 2 zero matrix. Similarly,

l2Ml>2 =
[
O I

] [ A B
B> D

] [
O I

]>
= D,

so l2 lies in a quadric when D is the 2× 2 zero matrix. Finally,

l3Ml>3 =
[
I I

] [ A B
B> D

] [
I I

]>
= B +B>,

so l3 lies in a quadric when B = −B>. Hence l1, l2, l3 lie in the quadric with

associated matrix M =

[
O B
−B> O

]
. The matrix B will be such that B = −B>

if

[
a b
c d

]
=

[
−a −c
−b −d

]
. This is true when a = d = 0 and b = −c. Up to scalar

equivalence (since we are working in PGL(4,R)), the only matrix satisfying these

conditions is B =

[
0 1
−1 0

]
.

Hence the lines l1, l2, l3 lie in the quadric with associated matrix

M =


1

−1
−1

1

 .
Let m1, m2, m3 be any three skew lines. Since we have shown in Proposition 3.2.1

that any three skew lines can be mapped to the fundamental triple of skew lines,
there exists some matrix H ∈ PGL(4,R) such that mH

1 = l1, m
H
2 = l2, and mH

3 = l3.
Then the associated matrix of the unique quadric determined by m1, m2, m3 is given
by HMH>. Q.E.D.

Remark 3.2.5. Most proofs of the generation of a hyperbolic quadric from three
skew lines are analytic, in the sense that they show that the parameters of the lines
‘fit’ a quadratic form (see for example [5], Theorem 2.4.4, [18], Section 81.1, and
[22], Chapter XI). The proof we have just provided is novel in that the result is
derived from the symmetry of the form.

3.3 Proof of skew projection

In this section, we tie together previous results from this chapter and prove that
skew projection does indeed generate a conic. Firstly, we need to establish some
more results about quadrics and skew lines: that a hyperbolic quadric intersects
planes in PG(3,R) in a conic and that the transversals to three skew lines do not
intersect.

Proposition 3.3.1. A hyperbolic quadric will intersect a given plane in a conic.
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Figure 3.3: A hyperbolic quadric. Note that the two parallel classes of lines which
comprise the hyperbolic quadric are clearly visible as pink and green lines.

Proof. Let V be a vector space and let B be a symmetric bilinear form associated
with a quadric Q. Let π be a plane, then π is defined by three vectors, that is,
π = 〈u1, u2, u3〉 for some vectors u1, u2, u3. Let v be a vector other than u1, u2, u3
(such a v exists), then B = {u1, u2, u3, v} defines a basis for V . Then the associated

matrix of Q with respect to B is MB =

[
N X
Y Z

]
, a symmetric matrix. If we restrict

MB to the plane π, we have MB|π = N is symmetric, so by Lemma 2.3.8, MB|π must
be the associated matrix of a (possibly degenerate) symmetric bilinear form. Hence
a quadric Q intersects a plane π in a conic. Q.E.D.

Proposition 3.3.2. The transversals to three skew lines do not meet.

Proof. Let l, m, n be three skew lines in PG(3,R) and suppose t1, t2 are transversals
to l, m, n through the points P1, P2, respectively, on l such that t1 and t2 meet in
a point. By the Grassmann Identity (2.1), we see that

dim〈t1, t2〉 = dim(t1) + dim(t2)− dim(t1 ∩ t2)
= 1 + 1− 0

= 2,

so t1, t2 span a plane. If this is so, then it follows that l, m, n are coplanar, which
is a contradiction. Hence the transversals to three skew lines do not meet. Q.E.D.

With these results, we can now prove that skew projection generates a conic (see
Figure 3.4).

Theorem 3.3.3. Skew projection generates a conic, that is, for three skew lines l,
m, n, a point P on l, a transversal tP to l, m, n through P , and a plane π, the set
{tP ∩ π : P ∩ l} defines a conic.
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Figure 3.4: A view of skew projection generating a conic. Here, the pink lines are
the three skew lines l, m, n and the green lines form the regulus to l, m, n.

Proof. Let l, m, n be three skew lines, let π be a plane, and let P , P ′, P ′′ be points
on l. Let tP , tP ′ , tP ′′ be the transversals to l, m, n through P , P ′, P ′′, respectively.
By Proposition 3.3.2, tP , tP ′ , tP ′′ are skew, so by Theorem 3.2.4, they determine a
unique hyperbolic quadric. By Proposition 3.3.1, this quadric defines a unique conic
on the plane π. Since this conic is unique, the transversal tS to l, m, n through
S 6= P , P ′, P ′′ lies in the same quadric as tP , tP ′ , tP ′′ . Since transversals are unique
for every point on l, this gives us a one-to-one correspondence between the points
on l and the points on the conic. Q.E.D.



Chapter 4

Classifications

In the previous chapter we proved that skew projection generates a conic by eliciting
the relationship between skew projection and hyperbolic quadrics. In this chapter,
we continue our investigation into hyperbolic quadrics. As such, we will classify the
non-empty non-degenerate quadrics in PG(3,R) via Sylvester’s Theorem (4.1.2). We
will then determine which conics are generated by skew projection by considering the
orbits of the quadric on degenerate and non-degenerate planes via Witt’s Theorem
(4.3.3). Finally, we determine the equivalent conditions on three skew lines for
generating these conics via a skew projection.

4.1 Classifying projective quadrics

The aim of this section will be to classify the projective quadrics in PG(3,R). The
essence of this classification is captured well by this quote, found in [4] (Definition
13.1.4.1):

The classification of quadratic forms over a field K is the problem of
finding the equivalence classes of quadratic forms on finite-dimensional
vector spaces over K.

This will be achieved by proving the following theorem:

Theorem 4.1.1. Up to projective equivalence, there are two non-degenerate non-
empty quadrics of PG(3,R),

1. (elliptic) w2 + x2 + y2 − z2 = 0 and
2. (hyperbolic) w2 + x2 − y2 − z2 = 0.

We will classify the affine quadrics in R3 in Section 4.2. There are many more
affine quadrics than projective quadrics and Theorem 4.1.1 is a beautiful example
of the simplicity of projective geometry. With respect to skew projection, The-
orem 4.1.1 asserts that the quadrics of PG(3,R) can be categorised into those con-

35
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Figure 4.1: James Joseph Sylvester (1814-1897) [17].

taining lines (hyperbolic) and those which do not contain lines (elliptic) and so the
reguli which comprise skew projection generate a hyperbolic quadric.

Sylvester’s Law of Inertia

James Josephs Sylvester (1814-1897) was a British mathematician, specialising as
an algebraist and especially known for his work on problems in number theory.
Although placing second in the mathematical tripos at the University of Cambridge
in 1837, Sylvester was unable to graduate or receive an appointment – this was
reserved for members of the Church of England and Sylvester was of the Jewish faith.
In spite of this, what followed for Sylvester was an illustrious career in mathematics
(and other areas). In 1838 he was appointed as a professor of natural philosophy
at University College, London and later received an appointment at the University
of Virginia. In 1839 he was made a fellow of the Royal Society and he was the
second president of the London Mathematical Society from 1866-68. In 1843 he
returned to England and took up actuarial studies and later legal studies, being
admitted to the bar in 1846. It was as a lawyer that he met another brilliant English
mathematician, Arthur Cayley, with whom he collaborated on mathematics. In 1855
he was appointed as a professor of mathematics at the Royal Military Academy,
Woolwich, and in 1876 he was given a professorship at John Hopkins University.
There he made a profound contribution to American mathematics, founding and
editing the American Journal of Mathematics. In 1883 he was made the Savilian
Professor of Geometry at the University of Oxford. He also wrote poetry [8].

Our classification of projective quadrics will require an alternative formulation
of Sylvester’s Law of Inertia. The following formulation of Sylvester’s Law is derived
from [2], Theorem 2.11, and [21], Theorem 11.21. See also the commentary in [1],
Chapter III, Section 7.



4.1. Classifying projective quadrics 37

Theorem 4.1.2 (Sylvester’s Law of Inertia). Let V be an n-dimensional real vector
space and let B be a symmetric bilinear form on V .

1. Then there is an orthogonal basis B = (v1, . . . , vn) for V such that B(vi, vj) = 0
if i 6= j and for each i, B(vi, vi) is equal to 1, −1, or 0. The basis B can be
ordered such that B = (s1, . . . , sp, t1, . . . , tm, u1, . . . , uz), where p + m + z = n
and B(si, si) = 1, B(ti, ti) = −1, and B(ui, ui) = 0. Hence the form B can be
represented by the diagonal matrix

MB =



1
. . .

1
−1

. . .

−1
0

. . .

0


.

2. The numbers p, m, and z are uniquely determined by the form B and are not
dependent on the choice of orthogonal basis B. The pair (p,m) is called the
signatue of the form.

For clarity, here is an example in the low-dimensional case n = 2:

Example 4.1.3. Let V = R2, a 2-dimensional real vector space, and let B = {e1, e2}
be the standard basis for R2, that is e1 = (1, 0), e2 = (0, 1). Then we have three
unique non-empty bilinear forms on V with respect to B:

1MB =

[
1

1

]
, 2MB =

[
1
−1

]
, 3MB =

[
1

0

]
.

These correspond to the bilinear forms x2 + y2 = 0, x2 − y2 = 0, and x2 = 0.

Before proving this theorem, we will need to prove two simple propositions:

Proposition 4.1.4. Suppose there is a symmetric bilinear form B on a vector
space V that is not identically zero. Then there is a vector v ∈ V which is not
self-orthogonal, that is, B(v, v) 6= 0.

Proof. If B is not identically zero, then there are some vectors v, w ∈ V such that
B(v, w) 6= 0. If either B(v, v) 6= 0 or B(w,w) 6= 0, we are done. If not, let u = v+w.
Note that u ∈ V because V is a vector space. We have

B(u, u) = B(v + w, v + w)

= B(v, v) +B(v, w) +B(w, v) +B(w,w)

= B(v, v) + 2B(v, w) +B(w,w),
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by symmetry, and since B(v, v) = B(w,w) = 0 by assumption, we have

B(v, v) + 2B(v, w) +B(w,w) = 2B(v, w) 6= 0

Hence, the vector u is not self-orthogonal. Q.E.D.

Proposition 4.1.5. Let w ∈ V be a vector which is not self-orthogonal. Let the
span of w be W . Then V is the direct sum of W and its orthogonal complement,
that is,

V = W ⊕W⊥,

where W⊥ = {v ∈ V : B(w, v) = 0 for every w ∈ W}.

In order to prove this proposition, it is sufficient to show that W and W⊥ have
empty intersection and that the sum of W , W⊥ spans V . Then the result follows
because W , W⊥ satisfy the requisite properties for direct sums of vector subspaces,
that is, if we have some subspaces S1, . . . , Sk of V , then V is the direct sum of the
subspaces Si if V =

∑k
i=1 Si and for each i ∈ {1, . . . , k}, Si ∩ (

∑
i 6=j Sj) = {0} ([21],

Chapter 1). Our proof of Proposition 4.1.5 follows [2] (Proposition 2.4 in this text).

Proof. Firstly, we show that W , W⊥ have empty intersection. As such, let cw ∈ W .
If cw ∈ W⊥, then B(cw, dw) = 0 for any dw ∈ W . But B(cw, dw) = cdB(w,w) (by
linearity) and B(w,w) 6= 0 by assumption.

Next, we show that W , W⊥ span V . We will achieve this by showing that any
v ∈ V can be written as a sum of vectors in W , W⊥, that is v = aw + w′, a ∈ V ,
w ∈ W , w′ ∈ W⊥.

We solve B(v − aw,w) = 0 for a in order to choose a cleverly:

B(v − aw,w) = 0

⇔ B(v, w)−B(aw,w) = 0

⇔ B(v, w)− aB(w,w) = 0.

The previous two lines are due to the linearity of the bilinear operator. From these
calculations, we find a = B(v,w)

B(w,w)
, which is defined since B(w,w) 6= 0.

Set w′ = v− aw, with a defined as above. It remains to show that B(w,w′) = 0
(so that indeed w′ ∈ W⊥) and v = aw+w′. The second equality is immediate. For
the first equality we compute:

B(w,w′) = B(w, v − aw)

= B(w, v)−B(w, aw)

= B(w, v)− aB(w,w)

= B(w, v)− B(v, w)

B(w,w)
B(w,w)

= B(w, v)−B(v, w)

= 0,
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where the second and third lines of calculation are due to the linearity of B and the
final line is due to the symmetry of B.

Therefore, W ∩W⊥ = {0} and V = W + W⊥, so it follows from the definition
of direct sums of vector subspaces that V = W ⊕W⊥. Q.E.D.

We are now ready to prove Theorem 4.1.2, following the proof found in [2]
(Theorem 2.11 in this text).

Proof of Theorem 4.1.2. We first prove that we can represent the form B by the
matrix MB. If B is identically zero, then the associated matrix MB will comprise
only zero entries with respect to any basis and hence MB will be a diagonal matrix
with respect to any basis, as required.

Now suppose B is not identically zero. Then by Proposition 4.1.4, there is a
vector vj, j 6 n, such that B(vj, vj) 6= 0, in other words, because B is not identically
zero, there must be a nonzero vector on the diagonal of MB. Let W be the span of
vj. Then by Proposition 4.1.5, V = W ⊕W⊥. Without loss of generality, let vj = v1
and by renumbering, let (w2, . . . , wn) be a basis for W⊥. Then a basis for V will be
(v1, w2, . . . , wn).

By restricting B to W⊥, we have a form on W⊥ because if B is a form on V ,
it must certainly be a form on the subspace W⊥. Hence we can orthogonalise the
vectors w2, . . . , wn with respect to B and in consequence we obtain orthogonal basis
vectors (v2, . . . , vn) for W⊥.

Since v1 is by definition orthogonal to every element of W⊥, we have B =
(v1, v2, . . . , vn) is an orthogonal basis for V .

It now remains to normalise B. If B(vi, vi) = 0, we are done. If B(vi, vi) 6= 0,
then set c−2 = ±B(vi, vi), replace vi with cvi, and note that such a c exists. Then

B(cvi, cvi) = cB(vi, cvi) = c2B(vi, vi) =
B(vi, vi)

B(vi, vi)
= ±1.

We can now permute the basis vectors as necessary to have MB in the required form.
The second step is to show that p, m, and z are uniquely determined by the

form. As such, notice that MB is a diagonal matrix in reduced row echelon form
and hence p+m is the rank of MB, since z is the number of zero rows in the reduced
form. With the basis B orthogonal and normalised, we show that (vp+m+1, . . . , vn)
form a basis for the null space N of V in order to show that z is determined by B.

If a vector w ∈ V is in the null space N , then B(w, vi) = 0 for every vi ∈ B (in
fact, the converse is also true). Since w ∈ V , we can write w as a linear combination
of basis vectors w = c1v1 + . . .+ cnvn, for some {ci} ∈ V . Then

B(w, vi) = B(c1v1 + . . .+ civi + . . .+ cnvn, vi)

= B(c1v1, vi) + . . .+B(civi, vi) + . . .+B(cnvn, vi),

since B is bilinear. Note that since the vectors vi are orthogonal basis vectors,
B(vi, vj) = 0 if i 6= j, so

B(c1v1, vi) + . . .+B(civi, vi) + . . .+B(cnvn, vi) = B(civi, vi)
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= ciB(vi, vi),

again, since B is bilinear.
B(vi, vi) will be nonzero when i 6 p+m, so ci must be zero for all i 6 p+m in

order for w to be orthogonal to vi as proposed. So w = cp+m+1vp+m+1 + . . .+ cnvn.
The vector w ∈ N was arbitrary, so we can represent every element in the null space
by the vectors (vp+m+1, . . . , vn). Hence (vp+m+1, . . . , vn) is a linearly independent set
spanning N , so it forms a basis for N . Now (vp+m+1, . . . , vn) are the z self-orthogonal
vectors, so it follows that z = dim(N) and z is determined by the form.

Since p+m satisfies p+m+ z = n, p+m is determined since z is determined.
It remains to show that either one of p, m is uniquely determined. Without loss of
generality, we will show that p is determined.

Suppose that from a second orthogonal and normalised basis B′ = (v′1, . . . , v
′
n)

we obtain integers p′, m′, such that p′ + m′ + z = n. Consider the p + (n − p′)
vectors (v1, . . . , vp, v

′
p′+1, . . . , v

′
n). We want to show that these vectors are linearly

independent. Suppose not, then there exists scalars {bi}, {ci} in V such that

b1v1 + . . .+ bpvp = cp′+1v
′
p′+1 + . . .+ cnv

′
n.

Let v = b1v1 + . . .+ bpvp = cp′+1v
′
p′+1 + . . .+ cnv

′
n. Then

B(v, v) = B(b1v1 + . . .+ bpvp, b1v1 + . . .+ bpvp)

= B(b1v1, b1v1) + . . .+B(bpvp, bpvp)

= b21B(v1, v1) + . . .+ b2pB(vp, vp),

where the previous two lines are due to the linearity of B. Now, since B(vi, vi) = 1
for i 6 p, we have

b21B(v1, v1) + . . .+ b2pB(vp, vp) = b21 + . . .+ b2p > 0.

On the other hand,

B(v, v) = B(cp′+1v
′
p′+1 + . . .+ cnv

′
n, cp′+1v

′
p′+1 + . . .+ cnv

′
n)

= B(cp′+1v
′
p′+1, cp′+1v

′
p′+1) + . . .+B(cnv

′
n, cnv

′
n)

= c2p′+1B(v′p′+1, v
′
p′+1) + . . .+ c2nB(v′n, v

′
n),

where the previous two lines are due to the linearity of B. Now, since B(vi, vi) = −1
for p′ < i 6 m′ and B(vi, vi) = 0 for m′ < i 6 n, we have

c2p′+1B(v′p′+1, v
′
p′+1) + . . .+ c2nB(v′n, v

′
n) = −c2p′+1 − . . .− c2p′+m′ 6 0.

Hence 0 6 B(v, v) 6 0, so B(v, v) = 0 = b21 + . . . + b2p and in consequence,
b1 = . . . = bp = 0. Since b1 = . . . = bp = 0, we have 0 = b1v1 + . . . + bpvp =
cp′+1v

′
p′+1 + . . . + cnv

′
n. But (v′1, . . . , v

′
n) is a basis, so if cp′+1v

′
p′+1 + . . . + cnv

′
n = 0,

then cp′+1 = . . . = cn = 0.
Hence the linear relation between the p+ (n− p′) vectors is trivial and they are

linearly independent. As a result, p+ (n− p′) 6 n, so p 6 p′. By interchanging the
roles of p and p′, we obtain p′ 6 p, so p = p′. Hence p is determined and so m is
determined. Q.E.D.
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Let B be a basis as in Theorem 4.1.2. Then for x ∈ PG(n,R), we have

xMBx
> =

∑p
i=1 x

2
i −

∑m
i=p+1 x

2
i = B(x, x).

Let g be the collineation taking any basis B′ to B – such a g exists because change of
basis is a linear map. This gives us an alternative formulation of Theorem 4.1.2, from
which the proof of Theorem 4.1.1 will follow. We state this alternative formulation
as the following theorem:

Theorem 4.1.6. Let Q be a quadric of PG(n,R). Then there is a collineation g
of PG(n,R) and integers l, m in {1, . . . , n + 1} such that l + m 6 n + 1, l 6 m,
and Qg has quadratic form

x21 + . . .+ x2m − (x2m+1 + . . .+ x2m+l) = 0.

Using Theorem 4.1.6 above, we now prove Theorem 4.1.1:

Proof of Theorem 4.1.1. Let Q be a quadric of PG(3,R). Then Q satisfies the
conditions of Theorem 4.1.6 with n = 3, so we have three cases.

Case 1. l = 0, m = 4: There is a collineation g1 of PG(3,R) such that Qg1 has
quadratic form

w2 + x2 + y2 + z2 = 0,

which has no real solution in PG(3,R) because the point (0, 0, 0, 0) /∈ PG(3,R).
Then the first case is the empty quadric in PG(3,R).

Case 2. l = 1, m = 3: There is a collineation g2 of PG(3,R) such that Qg2 has
quadratic form

w2 + x2 + y2 − z2 = 0,

the elliptic quadric of PG(3,R).
Case 3. l = 2, m = 2: There is a collineation g3 of PG(3,R) such that Qg3 has

quadratic form

w2 + x2 − y2 − z2 = 0,

the hyperbolic quadric of PG(3,R).
Hence all quadrics of PG(3,R) can be transformed via a collineation to the empty,

elliptic, or hyperbolic quadric. Thus the elliptic and hyperbolic quadrics are the
only non-degenerate non-empty quadrics of PG(3,R) up to projective equivalence.

Q.E.D.

Remark 4.1.7. Note that the hyperbolic quadric w2 + x2 − y2 − z2 = 0 has the
same eigenvalues as the hyperbolic quadric found in Theorem 3.2.4 and presented in
Example 2.3.3. To see this, let

A =


1

−1
−1

1

, B =


1

1
−1

−1

, and C =


1

1
1

1

.
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Let λ ∈ R and I be the 4 × 4 identity matrix. Then det(A − λI) = det(B − λI) =
det(C − λI) = (x− 1)2(x+ 1)2, so A, B, and C have the same eigenvalues λ = ±1.
The matrices A, B, and C are the associated matrices of quadratic forms with
respect to some bases B1, B2, B3. Since collineations preserve eigenvalues, there
exists collineations g1 mapping B1 to B2 and g2 mapping B3 to B2 (the collineations
g1, g2 are simply change of basis matrices). Hence, the matrices A, B, and C are
each the associated matrix of the unique quadratic form with signature (2, 2).

4.2 Classifying affine quadrics

In Section 4.1, we classified the projective quadrics. We now provide a classification
of affine quadrics. Often in affine geometry it is necessary to work through case
analyses which can be rather tedious, whereas projectively there is only one case.
Moreover, we can move between affine and projective geometries by adding or re-
moving the line at infinity. The combination of there being less quadrics projectively
and the ability to link back to the affine case makes projective geometry particularly
interesting.

It is only necessary to classify the projective quadrics in order to answer our
questions about skew projection. However, out of interest, in this section we classify
affine quadrics. In order to classify affine quadrics, we first prove the following
proposition (a variant of this proposition can be found in [4], Proposition 15.3.2):

Proposition 4.2.1. Let Q be a quadratic form over Rn with associated matrix
MB for a fixed basis B. Then the orbits of Q under the action of GL(n,R) are
represented by the following forms:

1. Q1(p,m):
∑p

i=1 x
2
i −

∑p+m
i=p+1 x

2
i ; p > m, 1 6 p+m 6 n,

2. Q2(p,m):
∑p

i=1 x
2
i −

∑p+m
i=p+1 x

2
i + 1; 1 6 p+m 6 n,

3. Q3(p,m):
∑p

i=1 x
2
i −

∑p+m
i=p+1 x

2
i + 2xn; p > m, 1 6 p 6 n− 1.

Proof. The proposition comes as a result of Theorems 4.1.2 and 4.1.6. Q.E.D.

With Proposition 4.2.1 proven, we can now proceed to prove the following the-
orem, which classifies the affine quadrics of R3:

Theorem 4.2.2. There are five non-empty non-degenerate quadrics of R3, namely
1. (ellipsoid) −x2 − y2 − z2 + 1 = 0,
2. (one-sheet hyperboloid) x2 − y2 − z2 + 1 = 0,
3. (two-sheet hyperboloid) x2 + y2 − z2 + 1 = 0,
4. (hyperbolic paraboloid) x2 − y2 + 2z = 0, and
5. (elliptic paraboloid) x2 + y2 + 2z = 0.

Proof. Using Proposition 4.2.1 with n = 3, we have to test the following pairs (p,m):
1. Q1(p,m): (1, 0), (1, 1), (2, 0), (2, 1), (3, 0);
2. Q2(p,m): (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0);
3. Q3(p,m): (1, 0), (1, 1), (2, 0), (2, 1).
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Rather tediously, we must now compute Q1(p,m), Q2(p,m), and Q3(p,m) for
all the pairs (p,m).

Q1(1, 0): x2 = 0, is the plane x = 0. Q1(1, 1): x2 − y2 = 0, is the union of two
planes x− y = 0 and x+ y = 0. Q1(2, 0): x2 + y2 = 0, is the line {(0, 0, z) : z ∈ R}.
Q1(2, 1): x2 + y2 − z2 = 0, is the degenerate cone with vertex (0, 0, 0). Q1(3, 0):
x2 + y2 + z2 = 0, is the point (0, 0, 0).

Q2(0, 1): −x2+1 = 0, is the union of two parallel planes−x+1 = 0 and x+1 = 0.
Q2(0, 2): −x2 − y2 + 1 = 0, is an infinite cylinder. Q2(0, 3): −x2 − y2 − z2 + 1 = 0,
is an ellipsoid. Q2(1, 0): x2 + 1 = 0, is the empty set. Q2(1, 1): x2 − y2 + 1 = 0,
is two curved sheets. Q2(1, 2): x2 − y2 − z2 + 1 = 0 is the one-sheet hyperboloid.
Q2(2, 0): x2+y2+1 = 0, is the empty set. Q2(2, 1): x2+y2−z2+1, is the two-sheet
hyperboloid. Q2(3, 0): x2 + y2 + z2 + 1 = 0, is the empty set.

Q3(1, 0): x2 + 2z = 0, is a curved sheet. Q3(1, 1): x2 − y2 + 2z = 0, is the
hyperbolic paraboloid. Q3(2, 0): x2+y2+2z = 0, is the elliptic paraboloid. Q3(2, 1):
x2 + y2 − z2 + 2z = 0, is simply a scaling of Q2(2, 1). Q.E.D.

4.3 Determining the conics

In this section, we will determine the orbits of the stabiliser of the hyperbolic quadric
on planes, recognising that the conic generated by skew projection is the intersection
of a plane with a hyperbolic quadric (as was shown in Section 3.2). We will begin
by stating Witt’s Theorem, a necessary theorem for classifying the orbits on planes,
and we will provide a sketch of the proof. We will proceed to determine the orbits of
the hyperbolic quadric on planes, which will answer the question of how the different
conics are generated by skew projection.

Witt’s Theorem

Witt’s Theorem will be necessary to compute the orbits of the quadrics on planes
(Section 4.3). The theorem is an extension theorem, it tells us that if we have a
form on a subspace, then it can be extended to the whole space. This will be useful
because it tells us that if we have a particular kind of subspace (a particular plane)
with a particular form on it (the associated bilinear form of the quadric restricted
to the plane), then all conics which satisfy the form are equivalent because they will
be in the same orbit.

Witt’s Theorem was first introduced by Ernst Witt (1911-1991) in his paper
Theorie der quadratischen Formen in beliebigen Körpern (1937) as a ‘cancellation
theorem’ [28]. Its equivalence to the extension theorem is noted in a later remark.
We reproduce this theorem and remark for the reader’s interest (the statements
given in Theorem 4.3.1 and Theorem 4.3.2 below are similar):

Satz 4. Aus R1 + R3
∼= R2 + R3 darf R1

∼= R2 geschlossen werden.

...

Anmerkung. Aus Satz 4 können leicht folgende Tatsachen er-
schlossen werden: Jede Lösung ωi1 der Gleichung

∑
i aix

2
i = a1 läßt sich
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zu einer Substitution xi =
∑

i ωikyk ergänzen, die Form
∑

ai
x2i festläßt.

Ebenfalls jede Lösung wi1, ωi2 des Gleichungssystems∑
i aix

2
i1 = a1,

∑
i aix

2
i2 = a2,

∑
i aixi1xi2 = 0. Usw.

Sind f und g zwei quadratische Formen, und sind die Variablen der
einen Form unabhängig von den Variablen der anderen, so bilden wir die
Summe f + g. Satz 4 können wir dann auch so aussprechen:

Aus f1 + f3 ∼= f2 + f3 darf f1 ∼= f2 gleschlossen werden.

It is beyond the scope of this thesis to provide a detailed proof of the theorem,
however, an outline of the proof will be provided and more detailed proofs can be
found in [4] (Theorem 13.7.1), [10], and [26] (Theorem 7.4). Before citing and prov-
ing the theorem, however, it will be necessary to briefly introduce some terminology.

For a vector space V , we have already seen that the orthogonal complement V ⊥

of V is the set of those elements of V which are orthogonal to every other element
of V with respect to a bilinear form B, that is

V ⊥ = {u ∈ V : B(u, v) = 0 for every v ∈ V }.

Furthermore, the radical rad(V ) of V is the set of all degenerate vectors in V ,
where a vector w ∈ V is said to be degenerate with respect to a bilinear form B if
B(w, v) = 0 for every v ∈ V . Clearly for V a vector space, rad(V ) = V ⊥. However,
if S ⊆ V , then rad(S) is the set of all degenerate vectors in S, whereas S⊥ is the
set of all vectors in V which are orthogonal to S, hence rad(S) = S ∩ S⊥ ([21],
see note after Theorem 11.3). Hence we make the distinction between radicals and
orthogonal complements in the proof of Theorem 4.3.3.

A vector space V is said to be nonsingular if its radical is trivial, that is, rad(V ) =
{0}. Let V , W be vector spaces over a field F and let Q1, Q2 be quadratic forms
on V , W respectively. The map σ : (V,Q1)→ (W,Q2) is an isometry if it preserves
quadratic forms, in the sense that for every v ∈ V , Q2(σ(v)) = Q1(v). A hyperbolic
pair is a pair of vectors (u, v) such that u, v are self-orthogonal with respect to B
and B(u, v) = 1.

Here are the cancellation and extension theorems as they appear in [10] (appear-
ing as Theorems 7.1 and 7.2 in this work):

Theorem 4.3.1 (Witt’s Cancellation Theorem). Let U1, U2, V1, V2 be quadratic
spaces (that is, vector spaces with a quadratic form), with V1 and V2 isometric. If
U1 ⊕ V1 ∼= U2 ⊕ V2, then U1

∼= U2.

Theorem 4.3.2 (Witt’s Extension Theorem). Let X1 and X2 be isometric quadratic
spaces. Suppose we are given orthogonal direct sum decompositions X1 = U1 ⊕ V1,
X2 = U2 ⊕ V2 and an isometry f : V1 → V2. Then there exists an isometry F :
X1 → X2 such that F |V1 = f and F (U1) = U2.

We state the theorems in the form of Theorems 4.3.1 and 4.3.2 because a straight-
forward explanation of the equivalence of the theorems can be found in [10], which we
now follow. Assuming the extension theorem, suppose we have quadratic spaces U1,
U2, V1, V2 satisfying the conditions of the cancellation theorem. Let X1 = U1 ⊕ V1,
X2 = U2⊕V2, and f : V1 → V2 be an isometry (such an isometry does exist because
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we assumed that V1, V2 are isometric). Then we have the conditions of the exten-
sion theorem, so there exists an isometry F : X1 → X2 such that F |V1 = f and
F (U1) = U2, that is, U1 is isometric to U2. Now assume the cancellation theorem
and suppose we have X1, X2, U1, U2, V1, V2 as in the extension theorem. Then
since V1 is isometric to V2, it follows that U1 ⊕ V1 is isometric to U2 ⊕ V2, so by the
cancellation theorem, U1 is isometric to U2. So there must be an isometry between
U1, U2. Let this isometry be fU . Then F = fU + f , where f : V1 → V2 comes from
the assumptions of the extension theorem, maps X1 = U1 ⊕ V1 to X2 = U2 ⊕ V2, is
an isometry, F |V1 = f , and F (U1) = fU(U1) = U2, so the extension theorem holds.

We are now ready for Witt’s Theorem (we follow the statement in [26], Theorem
7.4).

Theorem 4.3.3 (Witt’s Theorem). Suppose that U is a subspace of V and that the
map f : U → U is an isometry. Then there is an isometry g : V → V such that
g(u) = f(u) for all u ∈ U if and only if f(U∩ rad(V )) = f(U)∩ rad(V ).

Sketch of proof, following [26]. Here we provide an outline of D.E. Taylor’s proof.
Note that some assertions are given as lemmata in [26].

If we have an isometry g : V → V such that g(u) = f(u) for all u ∈ U ,
then it follows that f(U∩ rad(V )) = f(U)∩ rad(V ). Now, suppose that f(U∩
rad(V )) = f(U)∩ rad(V ). The proof in the other direction is more involved and
works through several cases. In each case, we construct the desired isometry g.

Firstly, assume that rad(V ) * U and rad(V ) * f(U). Choose a subspace W
to be the complement to both U∩ rad(V ) and f(U)∩ rad(V ) in rad(V ). Then U+
rad(V ) = U⊕W and f(U)+ rad(V ) = f(U)⊕W , so f+1W is an isometry extending
f (here 1W indicates the identity function on W ).

Now assume that rad(V ) ⊆ U and rad(V ) ⊆ f(U). If U = rad(V ) and if W
is the complement to U in V , then f + 1W is an isometry extending f . Hence, we
assume from now on that U 6= rad(V ). In this case, consider a hyperplane H of U
containing rad(V ) and let f ′ be the restriction of f to H. Then f ′ has an extension
g′ : V → V . By replacing f by f ′−1f , we can assume that f fixes H.

If f fixes U , then g = 1 and we are done. So now suppose f does not fix U .
Then we construct P = (f − 1)(U), a one-dimensional subspace of V . We can
show that H ⊆ P⊥, so then U ⊆ P⊥ if and only if f(U) ⊆ P⊥. If U * P⊥, then
U∩P⊥ = f(U)∩P⊥ = H. Let W be the complement to H in P⊥. Then V = W⊕U ,
so 1W + f is an isometry of V extending f .

Now assume U ⊆ P⊥ and f(U) ⊆ P⊥, then P ⊆ P⊥. If U 6= f(U), then
construct X, the complement to both U and f(U) in U + f(U). Let W be the
complement to U +f(U) in P⊥ and let S = W +X. Then P⊥ = S⊕U = S⊕f(U),
so 1S + f is an isometry of P⊥ extending f . If U = f(U), then let S be the
complement to U in P⊥ and we see that 1S + f is an isometry of P⊥. In the two
previous cases, 1S + f is the identity on a hyperplane of P⊥ containing rad(V ).

Now suppose U = P⊥ = f(U) 6= V . Then P = 〈u〉 = 〈f(v)− v〉 for some v ∈ U ,
so P ⊆ P⊥ and u is self-orthogonal. Let L be a two-dimensional subspace such that
P ⊆ L but L * P⊥. Then L is a non-degenerate subspace, so L = 〈u,w〉, for (u,w)
a hyperbolic pair. We see that w /∈ rad(V ), so 〈w〉⊥ is a hyperplane of V and L⊥
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is a hyperplane of U , hence 〈w〉⊥ ∩ U = L⊥. So define Y = f(L⊥), then 〈w〉 + Y
is a hyperplane of V containing rad(V ) but not f(U), so 〈w〉+ Y = 〈w′〉⊥ for some
w′ /∈ U . Hence 〈f(u), w′〉 is a non-degenerate subspace and Y = 〈f(u), w′〉⊥. Then
there exists a self-orthogonal vector w′′ such that 〈f(u), w′〉 = 〈f(u), w′′〉, where
(f(u), w′′) is a hyperbolic pair. Define a map g : 〈w〉 → V by aw 7→ aw′′. Then g is
an isometry, U = 〈u〉 ⊕ L⊥, V = 〈w〉 ⊕ U , so g + f is an isometry of V . Q.E.D.

Orbits of the hyperbolic quadric on planes

In order to determine the orbits of the hyperbolic quadric on planes, we must first
identify the isometry group of the hyperbolic quadric. The isometry group will
be the set of all isometries of the quadric. With respect to the standard basis in

PG(3,R), let M =

[
I O
O −I

]
be the matrix associated with the hyperbolic quadric

Q. Take g =

[
A B
C D

]
to be an arbitrary matrix in PGL(4,R). If g is in the isometry

group ofQ, then gMg> = M . To find the conditions on such a matrix g, we compute[
A B
C D

] [
I O
O −I

] [
A> C>

B> D>

]
=

[
(AA> −BB>) (AC> −BD>)
(CA> −DB>) (CC> −DD>)

]
.

Thus we have the following proposition on the properties of elements in the isometry
group of Q:

Proposition 4.3.4. A matrix g =

[
A B
C D

]
is in the isometry group of Q if it is

invertible and if the following four conditions hold:

1. (AA> −BB>) = I,

2. (AC> −BD>) = 0, and

3. (CC> −DD>) = −I.

If a matrix in PGL(4,R) satisfies these conditions, then the matrix is in the
isometry group of Q.

Now we will have a little diversion through some necessary background for the
reasoning which follows. Let U be a subspace of a vector space V . The perp
or orthogonal complement of U is the subspace containing all the elements of V
that are orthogonal to all the elements of U with respect to a form B. That is,
U⊥ = {v ∈ V : B(u, v) = 0 for every u ∈ U}.

Example 4.3.5. For an example relevant to our case, let P ∈ PG(3,R) be a point.
Then P⊥ will be the set of points Q ∈ PG(3,R) such that B(P,Q) = 0, hence
P⊥ = {Q ∈ PG(3,R) : B(P,Q) = 0}. Relating this to the associated matrix M ,
these are the points Q ∈ PG(3,R) such that PMQ> = 0. This set defines a plane,
so we see that the perp of a point is a plane.

Consider the point P = (1, 0, 0, 0) and the bilinear form associated with the
hyperbolic quadric. Then points Q = (w, x, y, z) such that B(P,Q) = 0 satisfy
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PMQ> = 0, that is

[
1 0 0 0

] 
1

1
−1

−1



w
x
y
z

 =
[
w
]

= 0.

Thus, it follows that P⊥ = {Q ∈ PG(3,R) : Q = (0, x, y, z)} and this is the plane
{w = 0}.

If π is a plane, then π⊥ = {Q ∈ PG(3,R) : B(P,Q) = 0 for every P ∈ π}.
Hence π⊥ is a point (we will see this later in Claim 8).

Let U be a subspace of PG(3,R). U is a non-degenerate subspace if U ∩U⊥ = ∅.
Clearly, if U is non-degenerate, then U⊥ is non-degenerate, and vice versa.

Consider Q. Either a point is on Q or it is not on Q. This means that if P is a
point on Q, then P ⊆ P⊥, but if P is a point not on Q, then P ∩ P⊥ = ∅. Hence
the perp of the non-degenerate planes are the points not on Q. Similarly, the perp
of a degenerate plane is a point on Q. This means the degenerate planes are in a
one-to-one correspondence with the points on Q because the points on Q always
meet in the intersection of two lines of the two reguli generating Q.

Claim 7. The isometry group of Q acts transitively on the set of points of Q.

Proof. Consider v0 = (1, 0, 1, 0). Clearly, 12 + 02 − 12 + 02 = 0, so v0 ∈ Q. Let
v′ = (v′1, v

′
2, v
′
3, v
′
4) be any point in Q, then (v′1)

2 + (v′2)
2 − (v′3)

2 − (v′4)
2 = 0, so

(v′1)
2 + (v′2)

2 = (v′3)
2 + (v′4)

2. Let λ = ((v′1)
2 + (v′2)

2)−
1
2 and note that λ always exists

since (v′1)
2 + (v′2)

2 is positive. Then without loss of generality (since in projective
space we have scalar equivalence of points), let v = (v1, v2, v3, v4) = λv′, so that
v21 + v22 = v23 + v24 = 1.

Now consider g =


v1 v2 0 0
v2 −v1 0 0
0 0 v3 v4
0 0 v4 −v3

. We see that

[
v1 v2
v2 −v1

] [
v1 v2
v2 −v1

]
=

[
v21 + v22 v1v2 − v1v2

v1v2 − v1v2 v22 + v21

]
= I

and similarly for

[
v3 v4
v4 −v3

]
. Hence, g is in the isometry group of Q because g

satisfies Proposition 4.3.4.
Furthermore,

vg0 =
[
1 0 1 0

] 
v1 v2 0 0
v2 −v1 0 0
0 0 v3 v4
0 0 v4 −v3

 =
[
v1 v2 v3 v4

]
= v,

hence we can map between any two points in Q by an element of the isometry group,
so the isometry group of Q acts transitively on Q. Q.E.D.
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(v1, v2)

(−v2, v1)

(v2,−v1)

Figure 4.2: Finding the perpendicular points to (v1, v2).

Remark 4.3.6. It may not be immediately obvious to the reader how the matrix

g was chosen. Starting with any matrix g =

[
A B
C D

]
, the simplest step was to set

B = C = 0. By choosing the first row of A to be the vector
[
v1 v2

]
and the first row

of D to be the vector
[
v3 v4

]
, we ensured that

[
1 0 1 0

]
g = v. Then we only

needed to ensure that AA> = DD> = I. For the matrix A, this would mean finding
a vector

[
w1 w2

]
such that w2

1 +w2
2 = 1 and (v1, v2) · (w1, w2) = 0, where · indicates

the standard Euclidean dot product. Recognising that the points (v1, v2) and (w1, w2)
are both on the unit circle, it is clear geometrically that (w1, w2) is the intersection
of the perpendicular to the line y = v2

v1
x with the unit circle. The perpendicular to

this line is y = −v1
v2

, which has two intersections with the unit circle, (v2,−v1) and
(−v2, v1) (see Figure 4.2). Similarly for the matrix D.

Remark 4.3.7. Alternatively, we can prove Claim 7 using Witt’s Theorem and
Lemma 4.3.8 below. Once we have the isometry f as in Lemma 4.3.8, Claim 7
follows from Witt’s Theorem because f extends as an isometry to the whole space.

Lemma 4.3.8 (See [12]). Let U1 and U2 be totally isotropic subspaces of a vector
space V with a bilinear form B, that is, for any u, v ∈ U1, B(u, v) = 0 and similarly
for U2. Then any bijective linear map f between them is an isometry.

Proof. Let u, v ∈ U1 and let f : U1 → U2 be a bijective linear map. Then

B(f(u), f(v)) = 0 = B(u, v).

Q.E.D.

As a result of Claim 7, we have the following corollary:
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Corollary 4.3.9. There is only one orbit on degenerate planes (the perps of the
points on Q).

Claim 8. There are two orbits on non-degenerate planes (the perps of the points
not on Q).

Proof. We can use Sylvester’s Law (Theorem 4.1.2) to show that there are at least
two orbits of the stabiliser of the hyperbolic quadric on non-degenerate planes, but
here we provide a direct proof. Let π1 be the plane z = 0 and let {e1, e2, e3} be
a basis for π1, where ei is the vector with 1 in the ith coordinate and 0 elsewhere.

Then Q restricted to the subspace π1 has associated matrix Mπ1 =

1
1
−1

.

Let π2 be the plane x = 0 and let {e1, e3, e4} be a basis for π2. Then Q restricted

to the subspace π2 has associated matrix Mπ2 =

1
−1

−1

.

Both π1 and π2 are non-degenerate planes and we can verify this by checking
that the orthogonal complements of these planes are not points in Q. Firstly, π⊥1
will be some point P1 ∈ PG(3,R) such that

P1


1

1
−1

−1



w
x
y
0

 = 0,

since every point in π1 will have w, x, y free and z = 0. Then P1 = (0, 0, 0, 1)
and 02 + 02 − 02 − 12 = −1 6= 0, so P1 /∈ Q. Hence π1 is a non-degenerate plane.
Similarly, π⊥2 will be some point P2 ∈ PG(3,R) such that

P2


1

1
−1

−1



w
0
y
z

 = 0,

since every point in π2 will have w, y, z free and x = 0. We see then that P2 =
(0, 1, 0, 0) and 02 + 12 − 02 − 02 = 1 6= 0, so P2 /∈ Q. Hence π2 is likewise a
non-degenerate plane.

We want to know whether there exists a matrix g in the isometry group of Q
such that π1 acted on by g is sent to π2, that is, whether we can map π1 to π2 by an
element of the isometry group of Q. It follows by definition that an isometry exists
between two subspaces if and only if an isometry exists between their perps. Hence,
we consider whether it is possible to map π⊥1 = P1 to π⊥2 = P2 by an element in the
isometry group.
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We know how elements in the isometry group look, they satisfy Proposition 4.3.4.

Let g =

[
A B
C D

]
be in the isometry group of Q. If g maps P1 to P2, then

(
0 0 0 1

) [A B
C D

]
=


0
1
0
0

 .

Since
(
0 0 0 1

) [A B
C D

]
gives us the last row of

[
C D

]
, we want to know if

the last row of
[
C D

]
can be

(
0 1 0 0

)
. Suppose this is true. Because we

are working in PGL(4,R), we consider whether the last row of
[
C D

]
can be(

0 λ 0 0
)
. Consider

g =

c1 c2 d1 d2
0 λ 0 0

 .
Then CC> =

[
(c21 + c22) λc2
λc2 λ2

]
and DD> =

[
(d21 + d22) 0

0 0

]
. Hence CC> −DD> =[

(c21 + c22)− (d21 + d22) λc2
λc2 λ2

]
. Then in order to satisfy the conditions of Proposition

4.3.4, we have CC>−DD> = −I if c2 = 0 (we can do this and maintain invertibility)
and λ2 = c21 − (d21 + d22) is such that λ2 < 0. This is only possible over the complex
numbers. So over the real numbers, there are at least two orbits on non-degenerate
planes.

We have now shown that for two chosen non-degenerate planes π1 and π2 in
PG(3,R), there does not exist an isometry between them. This means that there are
at least two orbits on non-degenerate planes. By Sylvester’s Law (Theorem 4.1.2),

there are only two non-empty quadrics over R3, having the signatures

1
1
−1


and

1
−1

−1

, respectively. This tells us that over R3 there are only two

quadrics, up to isometry. But this does not mean that there are only two quadrics
up to isometry when we view these quadrics as conics embedded in R4.

To show this, we will need to appeal to Witt’s Extension Theorem (Theorem
4.3.2). Without loss of generality, suppose π is a plane that is isometric to π1 when
considered as quadratic spaces over R3. Let X1, X2 be R4 equipped with a form
such that X1 = π1 ⊕ V1, for some V1, and X2 = π ⊕ V2, for some V2. Since π1 is
isometric to π and X1 is isometric to X2 (because, in fact, X1 = X2), it follows from
Witt’s Theorem that π1 and π are isometric as quadrics in R3. By Theorem 4.3.2,
this isometry extends, so there is an isometry of X1 mapping π1 to π. Hence, there
are exactly two orbits of the stabiliser of the hyperbolic quadric on planes. Q.E.D.
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Conditions on lines

In the previous section, we considered the requisite conditions on the fixed plane in
order to determine the conic generated by skew projection – that is, a plane of a
certain type intersects the quadric in a certain conic. We now, alternatively, consider
the conditions on skew lines. We have three mutually skew lines and a plane. We
want to know how the lines are configured with respect to the plane – how many
lie in the plane, how many intersect the plane in one point, and how many do not
intersect the plane at all.

In Section 4.3, we showed that there is only one orbit on degenerate planes
but we did not give a representative for the degenerate planes. Take the point
v0 = (1, 0, 1, 0), which is a point in the quadric since 12 + 02−12−02 = 0. The perp
of this point is the plane v⊥0 = {(w, x, y, z) ∈ PG(3,R) : w = y}:

[
1 0 1 0

] 
1

1
−1

−1



w
x
w
z

 = 0,

where (w, x, w, z) is a point in v⊥0 . Then v⊥0 intersects the quadric in the set of
points

{(w, x, w, z) ∈ v⊥0 : w2 + x2 − w2 − z2 = 0}
={(w, x, w, z) ∈ v⊥0 : x2 − z2 = 0}
={(w, x, w, z) ∈ v⊥0 : x = ±z}
={(w, x, w, z) ∈ v⊥0 : x = z} ∪ {(w, x, w, z) ∈ v⊥0 : x = −z}
={(w, x, w, x)} ∪ {(w, x, w,−x)},

which defines two lines with intersection (1, 0, 1, 0). Hence, the degenerate planes
intersect the quadric in two intersecting lines (a degenerate conic).

For the non-degenerate planes, π1 intersects the quadric in the set of points
w2− y2− z2 = 0, which is the circle in the yz-plane with radius w, and π2 intersects
the quadric in the set of points w2 + x2 − y2 = 0, which is the circle in the wx-
plane with radius y. Hence, the non-degenerate planes intersect the quadric in a
non-degenerate conic.

Now, as demonstrated in Section 3.1, a line either lies in a plane or intersects it
in one point. So we know that none of the three lines can be disjoint from the fixed
plane. By definition of their mutual skewness, no two of the lines can lie in the same
plane. This leaves us with two cases: 1) one line lies in the fixed plane and the other
two intersect it in one point and 2) all three lines intersect the fixed plane in one
point. One further fact about conics worth mentioning here is that non-degenerate
conics are determined by five points, no three collinear ([6], page 87). Hence, non-
degenerate conics do not contain three collinear points and by extension, they do
not contain lines.

In the first case, one of the skew lines is intersecting the plane in a line, so the
intersection of the quadric with the plane cannot be a non-degenerate conic because
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non-degenerate conics do not contain lines. In this case, skew projection generates a
degenerate conic. Furthermore, the type of degenerate conic is two intersecting lines
because if one set of transversals is intersecting the plane in a line, the other set of
transversals must be intersecting in a line which intersects the one in the plane.

In the second case, there is one more subtlety to consider. If the three skew lines
intersect the plane in three collinear points, then the quadric is intersecting the plane
in at least three collinear points, so the quadric must be intersecting a degenerate
plane because a non-degenerate conic (generated by the intersection of a quadric
with a non-degenerate plane) does not contain three collinear points. Moreover,
since the three skew lines meet the plane in collinear points, their transversal must
lie in the plane. Then any two additional lines in their regulus must also meet the
plane, so the quadric is meeting the plane in two intersecting lines. Hence in the case
that the three lines intersect the plane in three collinear points, we again generate
a degenerate conic (two intersecting lines).

In the case that the three points of intersection are non-collinear, let l, m, n
be the three skew lines and let L, M , N be the respective points of intersection
of each line with a plane π. Suppose, in order to gain a contradiction, that π is
degenerate. Then we know that π intersects the quadric in two lines, so two of L,
M , N must be contained in a line of the quadric in π. Without loss of generality,
suppose L, M are contained in this line. Since LM is a line, (LM)⊥ = LM is
also a line. The following subspace identity holds for projective subspaces: if A,
B are subspaces, then 〈A,B〉⊥ = A⊥ ∩ B⊥. Using this, we see that L = 〈l, π〉, so
L⊥ = 〈l, π〉⊥ = l⊥∩π⊥. Similarly, M = 〈m,π〉, so M⊥ = 〈m,π〉⊥ = m⊥∩π⊥. Then
LM = 〈L,M〉 = 〈L,M〉⊥ = L⊥ ∩M⊥ = (l⊥ ∩ π⊥) ∩ (m⊥ ∩ π⊥), so π⊥ is a point
on LM . Moreover, since LM = L⊥ ∩M⊥, we have that LM is a line in the plane
L⊥. Also, L = l ∩ π, so L⊥ = (l ∩ π)⊥ = 〈l, π⊥〉, hence l is a line in the plane L⊥.
Thus L⊥ = 〈LM, l〉. Similarly, M⊥ = 〈LM, l〉. Hence L⊥ = M⊥, so the lines l, m
lie in the same plane, which is a contradiction, since l, m are skew. We conclude,
then, that when three skew lines intersect a plane in three non-collinear points, a
non-degenerate conic is generated. Every conic is an intersection of the hyperbolic
quadric with a plane (Proposition 3.3.1). Take a non-degenerate conic, choose three
non-collinear points on the conic (which necessarily exist), choose three lines from
the same regulus through these points and these are the three skew lines required
to generate this conic. Hence we can obtain every non-degenerate conic when the
three skew lines intersect the plane in three non-collinear points.

This gives us the following theorem:

Theorem 4.3.10. Given a skew projection in PG(3,R) (as outlined in Section 1.3),
if the three skew lines meet the plane in three non-collinear points, then skew pro-
jection generates a non-degenerate conic. Otherwise, skew projection generates a
degenerate conic in the form of two intersecting lines.
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Figure 4.3: Theorem 4.3.10 (first degenerate case, one skew line lies in the plane).

Figure 4.4: Theorem 4.3.10 (second degenerate case, the three intersecting points
of the skew lines are collinear).

Figure 4.5: Theorem 4.3.10 (non-degenerate case, the three intersecting points of
the skew lines are non-collinear).





Chapter 5

Concluding Remarks

5.1 Summary

In this thesis, we investigated skew projection and in particular, we were interested
in determining how skew projection generates a conic. After working through the
relevant background material, this aim was achieved in Chapter 3. Here we proved
the existence of skew projection (Section 3.1) and, by proving that the action of
PGL(3,R) on triples of skew lines is transitive (Proposition 3.2.1), we proved the
existence and uniqueness of a hyperbolic quadric generated by three skew lines and
their regulus (Theorem 3.2.4).

After proving Sylvester’s Law of Inertia (Theorem 4.1.2), we ascertained that
there are two projective non-degenerate quadrics, up to projective equivalence, the
hyperbolic quadric and the elliptic quadric (Theorem 4.1.1). The hyperbolic quadric
is the only projective non-degenerate quadric containing lines, hence we concluded
that three skew lines and their transversals generate a hyperbolic quadric. Thus, the
conic generated by skew projection is the intersection of a plane with a hyperbolic
quadric.

The main result of this thesis was the determination of the types of conics gen-
erated by skew projection. To do this, we determined the orbits of the stabiliser
of the hyperbolic quadric on degenerate and non-degenerate planes. We discussed
Witt’s Theorem (Theorem 4.3.3) which, along with Sylvester’s Law, enabled us to
ascertain that there are three orbits of the hyperbolic quadric on planes: two orbits
on non-degenerate planes and one orbit on degenerate planes. We then considered,
alternatively to the conditions on planes, the conditions on three skew lines and
ascertained that a degenerate conic is generated when three skew lines meet an un-
derlying plane in three collinear points or when one of the three skew lines lies in
the plane and that a non-degenerate conic is generated when three skew lines meet
an underlying plane in three non-collinear points.
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5.2 Further considerations

Further to this thesis, there is still much to be discovered regarding skew projection.
The proof of the set up of skew projection in Section 3.1 relied solely on dimension
arguments which hold in all projective spaces. It follows, then, that we can consider
skew projection over spaces other than the real numbers. There are three cases that
we consider in these concluding remarks.

Skew projection over finite fields

The 16 Point Theorem of Dandelin-Gallucci (Theorem 2.4.1) gives the provisor that
it is necessary for skew lines and their transversals to be taken over a field in order to
generate a unique regulus, so it follows that a unique regulus can be generated over
finite fields (and the complex numbers and other fields, which we will discuss later).
With a unique regulus, the remaining arguments for generating a unique hyperbolic
quadric will hold over finite fields, except possibly over fields of characteristic two.

The main issue in the case of finite fields is, of course, fields of characteristic two.
This could certainly be a basket case, especially since quadratic forms are determined
by the number of positive and negative ones in diagonalised form (Sylvester’s Law
4.1.2), which of course would not hold in characteristic two, where positive numbers
equal negative numbers. A unique regulus will be generated, the issue is whether it
will determine a quadratic form. In fact, in characteristic two the bilinear form will
be a symplectic form, one which is both symmetric and alternating simultaneously.

There is great potential here – we need not limit ourselves to the finite case,
even. There are many more general fields which could be considered. The 2-adics,
for instance, are an infinite field with characteristic two which could work a lot more
‘nicely’ than finite fields of characteristic two.

Skew projection over the complex numbers

Most obviously, this thesis considered skew projection over the real numbers, yet it
is also possible to consider skew projection over the complex numbers C. As afore-
mentioned, as a result of the Dandelin-Gallucci Theorem, we know that a unique
regulus will be generated over the complex numbers. The remaining arguments
easily extend to the complex numbers and we will once again generate a unique
hyperbolic quadric.

Whilst Sylvester’s Law of Inertia (Theorem 4.1.2) will still hold, when we classify
the non-empty non-degenerate quadrics of PG(3,C) (Theorem 4.1.1), the first case
w2 + x2 + y2 + z2 = 0 will be no longer empty. Even as far as it concerns conics,
the empty conic x2 + y2 = −1 will be no longer empty when solutions over C are
considered.

The alternative formulation of Sylvester’s Law of Inertia (Theorem 4.1.6) has a
natural extension to C, as does our classification of affine quadrics in Section 4.2.1.
For further information, the reader is directed to the treatment of the classification
of affine quadrics over the complex numbers in [4] (Proposition 15.3.1).
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An interesting consequence of skew projection over C will be found when de-
termining the orbits of the quadric on planes. Firstly, recall that in Claim 8, we
argued that there are two orbits of the quadric on non-degenerate planes. However,
our argument would not hold over the complex numbers, where the desired isometry
g between the two non-degenerate planes will exist.

Skew projection over Hermitian spaces

Another interesting path would be finding analogous constructions in Hermitian
spaces, that is, vector spaces endowed with a Hermitian form as opposed to a quad-
ratic form. We can consider Hermitian spaces over C or Fq2 (fields of order q2).
Whereas the points x in a quadratic form are such that xMx> = 0, for M the as-
sociated matrix of some quadratic form Q, the points which comprise a Hermitian
form are such that xMx> = 0, for M the associated matrix of some Hermitian form
H, where x indicates the complex conjugate of the point x. A Hermitian matrix M

has real eigenvalues and is equal to its conjugate transpose, that is, M = M
>

.
Consider the following set-up over the complex numbers. Let l =

[
I O

]
, m =[

O I
]
, and n =

[
I I

]
be three skew lines, where we allow the lines to take complex

values. Let P be a point on l, where possibly P could be complex-valued. Then
P = (1, v, 0, 0) for some v ∈ C.

We want an equation for the unique transversal tP to the three skew lines through
P (note once again that tP is still unique since the proof in Section 3.1 of the
uniqueness of a transversal to three skew lines through a given point relied solely
on dimension arguments which hold in any projective space). Firstly, let’s compute
the span of P and m:

〈P,m〉 =

1 v 0 0
0 0 1 0
0 0 0 1



a
b
c
d

 ,
where (a, b, c, d) is any point in PG(3,C). This yields the plane π with equation
vw = x. To find the intersection of π with the line n, we must solve the three
equations vw = x, w = y, and x = z simultaneously. Then the intersection π ∩
n = NP = (1, v, 1, v). The transversal tP is the span of P and NP , so tP =
〈(1, v, 1, v), (1, v, 0, 0)〉. Hence any point on tP has the form (1, v, b, bv) for some
b ∈ C ∪ {∞}.

Now let U =

[
O B

−B> O

]
be a Hermitian matrix. Firstly, we consider P to be a

point on the real part of the line l, so v ∈ R. We want to show that the transversal
tP ⊆ U .

There is still much to discover about skew projection, but at least this thesis,
in teasing out the situation over the real numbers, can in some small way lay the
foundation for further studies of this seemingly magical and all together beautiful
geometric construction.
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